Mahdi Dibaiee
|
88ef4da496
|
fix(model): class_weight check using .any
|
2019-05-25 12:09:34 +04:30 |
|
Mahdi Dibaiee
|
8ffeff179f
|
fix(map_generator): distance_to_water distribution sync
|
2019-05-22 20:21:19 +04:30 |
|
Mahdi Dibaiee
|
c9c7f26910
|
feat(random_map_generator): generate maps randomly
|
2019-05-22 08:29:42 +04:30 |
|
Mahdi Dibaiee
|
d91c04e2f5
|
feaT(draw): alpha value for biomes
|
2019-05-18 22:06:09 +04:30 |
|
Mahdi Dibaiee
|
d965474974
|
feat(map-generator): use biome models for generating the biome layer
|
2019-05-18 16:17:28 +04:30 |
|
Mahdi Dibaiee
|
f79c63abf8
|
feat(generator/biomes): generate input for biome models
|
2019-05-16 09:56:13 +04:30 |
|
Mahdi Dibaiee
|
0d348b6276
|
feat(end-to-end): end-to-end prediction
|
2019-05-12 19:24:20 +04:30 |
|
Mahdi Dibaiee
|
2892129ee8
|
fix: split temps precips to different models
|
2019-05-11 17:16:05 +04:30 |
|
Mahdi Dibaiee
|
cbe8e7dd20
|
fix(regression): prediction for temps model
|
2019-05-02 10:55:14 +04:30 |
|
Mahdi Dibaiee
|
b192531a2a
|
fix(model): checkpoints in h5 format
|
2019-04-26 13:14:43 +04:30 |
|
Mahdi Dibaiee
|
b377c6dd5f
|
fix(map-generator): improve continent generation
|
2019-04-24 15:00:45 +04:30 |
|
Mahdi Dibaiee
|
3bec4d7486
|
feat(web): auto-generated form
|
2019-04-22 13:18:43 +04:30 |
|
Mahdi Dibaiee
|
e18fc7692b
|
feat(web): web server and basic dashboard
|
2019-04-22 09:49:31 +04:30 |
|
Mahdi Dibaiee
|
8d4010b5dc
|
feat(map-generator): mountain-agent for generating mountains
|
2019-04-14 12:19:54 +04:30 |
|
Mahdi Dibaiee
|
3cd25bb458
|
feat(map-generator): base of map generator
|
2019-04-09 12:12:30 +04:30 |
|
Mahdi Dibaiee
|
e29d461319
|
chore(biomes): move biomes to /biomes
|
2019-04-09 08:20:32 +04:30 |
|
Mahdi Dibaiee
|
e977239027
|
fix(draw): use circle patches instead of scatter plot
|
2019-03-31 11:59:06 +04:30 |
|
Mahdi Dibaiee
|
e3e3fecf4d
|
refactor: working version with command-line utilities
|
2019-03-31 09:52:00 +04:30 |
|
Mahdi Dibaiee
|
fe3f539d7d
|
updates
|
2019-03-07 06:55:23 +03:30 |
|
Mahdi Dibaiee
|
8477c02aae
|
fix: use correct order for prediction
|
2019-03-05 15:23:29 +03:30 |
|
Mahdi Dibaiee
|
3dcafddb8c
|
refactor(data): include latitude longitude in columns, not indices
|
2019-03-05 11:29:30 +03:30 |
|
Mahdi Dibaiee
|
865cc775ed
|
fix(nn): better normalization, weight initialization and activation
|
2019-02-28 17:22:50 +03:30 |
|
Mahdi Dibaiee
|
c28fc0850f
|
updates
|
2019-02-28 13:34:47 +03:30 |
|
Mahdi Dibaiee
|
f268e72244
|
feat(temps): various temperatures
|
2019-02-27 15:06:20 +03:30 |
|
Mahdi Dibaiee
|
d8365d6285
|
feat(models): train models and evaluate them
|
2019-02-26 11:50:31 +03:30 |
|
Mahdi Dibaiee
|
0d9a0068b1
|
feat(nn): first model for predicting temp and precip
|
2019-02-20 09:06:03 +03:30 |
|
Mahdi Dibaiee
|
c490f2006b
|
feat(draw): draw dataframe on map
|
2019-02-17 09:50:20 +03:30 |
|
Mahdi Dibaiee
|
a2ff08b195
|
fix(data.py): precipication value was same as temp
|
2019-02-14 12:36:09 +03:30 |
|
Mahdi Dibaiee
|
4318cf71be
|
feat(tf): transform dataframe to tensorflow dataset
|
2019-02-12 08:41:33 +03:30 |
|
Mahdi Dibaiee
|
ef604661ca
|
feat(data): seasonal temp/precip data + distance to water
|
2019-02-11 14:49:14 +03:30 |
|
Mahdi Dibaiee
|
caa1b0443c
|
fix(data.py): optimize for optimal performance and generate data
|
2019-02-08 18:14:57 +03:30 |
|
Mahdi Dibaiee
|
902be97332
|
feat(data.py): data-reading file
|
2019-02-03 09:04:28 +03:30 |
|
Mahdi Dibaiee
|
37d26dba75
|
initial version
|
2019-02-02 16:16:38 +03:30 |
|