feat(end-to-end): end-to-end prediction
This commit is contained in:
parent
2892129ee8
commit
0d348b6276
@ -24,16 +24,18 @@ def predicted_map(B, change=0, path=None):
|
||||
]
|
||||
|
||||
frame = df[inputs + ['longitude']]
|
||||
frame_cp = df[inputs + ['longitude']]
|
||||
|
||||
for season in SEASONS:
|
||||
frame.loc[:, 'temp_{}_{}'.format(season, year)] += change
|
||||
|
||||
print(frame.head())
|
||||
frame_cp = frame.copy()
|
||||
|
||||
columns = ['latitude', 'longitude', 'biome_num']
|
||||
new_data = pd.DataFrame(columns=columns)
|
||||
nframe = pd.DataFrame(columns=frame.columns, data=normalize_ndarray(frame.to_numpy(), frame_cp.to_numpy()))
|
||||
nframe = pd.DataFrame(columns=frame.columns, data=normalize_ndarray(frame.to_numpy()))
|
||||
|
||||
for i, (chunk, chunk_original) in enumerate(zip(chunker(nframe, B.batch_size), chunker(frame, B.batch_size))):
|
||||
for i, (chunk, chunk_original) in enumerate(zip(chunker(nframe, B.batch_size), chunker(frame_cp, B.batch_size))):
|
||||
if chunk.shape[0] < B.batch_size:
|
||||
continue
|
||||
input_data = chunk.loc[:, inputs].values
|
||||
@ -48,7 +50,7 @@ def predicted_map(B, change=0, path=None):
|
||||
|
||||
draw(new_data, path=path)
|
||||
|
||||
def predicted_map_cmd(checkpoint='checkpoints/save.h5', change=0, path=None):
|
||||
def predicted_map_cmd(checkpoint='checkpoints/b.h5', change=0, path=None):
|
||||
B = Model('b', epochs=1)
|
||||
B.prepare_for_use()
|
||||
B.restore(checkpoint)
|
||||
@ -136,6 +138,110 @@ def predicted_precips_cmd(checkpoint='checkpoints/precip.h5', year=2000):
|
||||
Precip.restore(checkpoint)
|
||||
predicted_precips(Precip, year=year)
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire({ 'map': predicted_map_cmd, 'temp': predicted_temps_cmd, 'precip': predicted_precips_cmd })
|
||||
def predict_end_to_end(Temp, Precip, Biomes, year=2000):
|
||||
columns = INPUTS
|
||||
|
||||
df = pd.read_pickle('data.p')
|
||||
|
||||
inputs = df[INPUTS]
|
||||
|
||||
all_temps = ['temp_{}_{}'.format(season, year) for season in SEASONS]
|
||||
inputs.loc[:, 'mean_temp'] = np.mean(df[all_temps].values)
|
||||
|
||||
inputs = inputs.to_numpy()
|
||||
inputs = normalize_ndarray(inputs)
|
||||
out_columns = all_temps
|
||||
out = Temp.predict(inputs)
|
||||
temp_output = pd.DataFrame(data=denormalize(out, df[out_columns].to_numpy()), columns=out_columns)
|
||||
|
||||
inputs = df[INPUTS]
|
||||
|
||||
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
|
||||
inputs.loc[:, 'mean_precip'] = np.mean(df[all_precips].values)
|
||||
|
||||
inputs = inputs.to_numpy()
|
||||
inputs = normalize_ndarray(inputs)
|
||||
out_columns = all_precips
|
||||
out = Precip.predict(inputs)
|
||||
|
||||
precip_output = pd.DataFrame(data=denormalize(out, df[out_columns].to_numpy()), columns=out_columns)
|
||||
|
||||
inputs = list(INPUTS)
|
||||
|
||||
for season in SEASONS:
|
||||
inputs += [
|
||||
'temp_{}_{}'.format(season, year),
|
||||
'precip_{}_{}'.format(season, year)
|
||||
]
|
||||
|
||||
frame = df[inputs + ['longitude']]
|
||||
|
||||
for season in SEASONS:
|
||||
tc = 'temp_{}_{}'.format(season, year)
|
||||
pc = 'precip_{}_{}'.format(season, year)
|
||||
frame.loc[:, tc] = temp_output[tc]
|
||||
frame.loc[:, pc] = precip_output[pc]
|
||||
|
||||
frame.loc[:, 'latitude'] = df['latitude']
|
||||
|
||||
frame_cp = frame.copy()
|
||||
|
||||
columns = ['latitude', 'longitude', 'biome_num']
|
||||
new_data = pd.DataFrame(columns=columns)
|
||||
nframe = pd.DataFrame(columns=frame.columns, data=normalize_ndarray(frame.to_numpy()))
|
||||
|
||||
for i, (chunk, chunk_original) in enumerate(zip(chunker(nframe, Biomes.batch_size), chunker(frame_cp, Biomes.batch_size))):
|
||||
if chunk.shape[0] < Biomes.batch_size:
|
||||
continue
|
||||
input_data = chunk.loc[:, inputs].values
|
||||
out = Biomes.predict_class(input_data)
|
||||
|
||||
f = pd.DataFrame({
|
||||
'longitude': chunk_original.loc[:, 'longitude'],
|
||||
'latitude': chunk_original.loc[:, 'latitude'],
|
||||
'biome_num': out
|
||||
}, columns=columns)
|
||||
new_data = new_data.append(f)
|
||||
|
||||
print(new_data)
|
||||
draw(new_data)
|
||||
|
||||
def predict_end_to_end_cmd(checkpoint_temp='checkpoints/temp.h5', checkpoint_precip='checkpoints/precip.h5', checkpoint_biomes='checkpoints/b.h5', year=2000):
|
||||
batch_size = A_params['batch_size']['grid_search'][0]
|
||||
layers = A_params['layers']['grid_search'][0]
|
||||
optimizer = A_params['optimizer']['grid_search'][0](A_params['lr']['grid_search'][0])
|
||||
|
||||
Temp = Model('temp', epochs=1)
|
||||
Temp.prepare_for_use(
|
||||
batch_size=batch_size,
|
||||
layers=layers,
|
||||
dataset_fn=dataframe_to_dataset_temp,
|
||||
optimizer=optimizer,
|
||||
out_activation=None,
|
||||
loss='mse',
|
||||
metrics=['mae']
|
||||
)
|
||||
Temp.restore(checkpoint_temp)
|
||||
|
||||
Precip = Model('precip', epochs=1)
|
||||
Precip.prepare_for_use(
|
||||
batch_size=batch_size,
|
||||
layers=layers,
|
||||
dataset_fn=dataframe_to_dataset_temp,
|
||||
optimizer=optimizer,
|
||||
out_activation=None,
|
||||
loss='mse',
|
||||
metrics=['mae']
|
||||
)
|
||||
Precip.restore(checkpoint_precip)
|
||||
|
||||
Biomes = Model('b', epochs=1)
|
||||
Biomes.prepare_for_use()
|
||||
Biomes.restore(checkpoint_biomes)
|
||||
|
||||
predict_end_to_end(Temp=Temp, Precip=Precip, Biomes=Biomes, year=year)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire({ 'map': predicted_map_cmd, 'temp': predicted_temps_cmd, 'precip': predicted_precips_cmd, 'end-to-end': predict_end_to_end_cmd })
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user