fix: split temps precips to different models
This commit is contained in:
parent
cbe8e7dd20
commit
2892129ee8
29
biomes/plot.py
Normal file
29
biomes/plot.py
Normal file
@ -0,0 +1,29 @@
|
||||
from utils import *
|
||||
import tensorflow as tf
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
tf.enable_eager_execution()
|
||||
|
||||
df = pd.read_pickle('data.p')
|
||||
_, columns, _, _, dataset = dataframe_to_dataset_temp_precip(df)
|
||||
|
||||
xs = np.empty((3, 100))
|
||||
ys = np.empty((100))
|
||||
|
||||
for i, (inp, out) in enumerate(dataset.take(100)):
|
||||
xs[0][i] = float(inp[0])
|
||||
xs[1][i] = float(inp[1])
|
||||
xs[2][i] = float(inp[2])
|
||||
ys[i] = float(out[0])
|
||||
|
||||
print(xs, ys)
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(1, 1, 1)
|
||||
ax.scatter(xs[0], ys, c='red', label='elevation')
|
||||
ax.scatter(xs[1], ys, c='blue', label='distance_to_water')
|
||||
ax.scatter(xs[2], ys, c='green', label='latitude')
|
||||
#ax.scatter(xs2, 0, zs=0, c='blue')
|
||||
|
||||
plt.show()
|
@ -59,49 +59,83 @@ def predicted_temps(A, year=2000):
|
||||
|
||||
df = pd.read_pickle('data.p')
|
||||
|
||||
print(columns)
|
||||
# print(df[0:A.batch_size])
|
||||
inputs = df[INPUTS]
|
||||
|
||||
all_temps = ['temp_{}_{}'.format(season, year) for season in SEASONS]
|
||||
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
|
||||
inputs.loc[:, 'mean_temp'] = np.mean(df[all_temps].values)
|
||||
|
||||
inputs = inputs.to_numpy()
|
||||
inputs = normalize_ndarray(inputs)
|
||||
print(inputs[0:A.batch_size])
|
||||
|
||||
out_columns = all_temps # + all_precips
|
||||
print(out_columns)
|
||||
|
||||
out = A.predict(inputs)
|
||||
actual_output = df[out_columns][0:A.batch_size]
|
||||
model_output = pd.DataFrame(data=denormalize(out, df[out_columns].to_numpy()), columns=out_columns)[0:A.batch_size]
|
||||
print(actual_output)
|
||||
print(model_output)
|
||||
|
||||
def predicted_precips(A, year=2000):
|
||||
columns = INPUTS
|
||||
|
||||
df = pd.read_pickle('data.p')
|
||||
|
||||
inputs = df[INPUTS]
|
||||
|
||||
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
|
||||
inputs.loc[:, 'mean_precip'] = np.mean(df[all_precips].values)
|
||||
|
||||
inputs = inputs.to_numpy()
|
||||
inputs = normalize_ndarray(inputs)
|
||||
print(inputs[0:A.batch_size])
|
||||
|
||||
out_columns = all_temps + all_precips
|
||||
out_columns = all_precips
|
||||
print(out_columns)
|
||||
|
||||
out = A.predict(inputs)
|
||||
# print(out.shape, out[0].shape)
|
||||
# print(out)
|
||||
# print(out[0])
|
||||
print(normalize_ndarray(df[out_columns])[0:A.batch_size])
|
||||
print(pd.DataFrame(data=out, columns=out_columns))
|
||||
# print(df[out_columns][0:A.batch_size])
|
||||
# print(pd.DataFrame(data=denormalize(out, df[out_columns].to_numpy()), columns=out_columns))
|
||||
actual_output = df[out_columns][0:A.batch_size]
|
||||
model_output = pd.DataFrame(data=denormalize(out, df[out_columns].to_numpy()), columns=out_columns)[0:A.batch_size]
|
||||
print(actual_output)
|
||||
print(model_output)
|
||||
|
||||
def predicted_temps_cmd(checkpoint='checkpoints/a.h5', year=2000):
|
||||
def predicted_temps_cmd(checkpoint='checkpoints/temp.h5', year=2000):
|
||||
batch_size = A_params['batch_size']['grid_search'][0]
|
||||
layers = A_params['layers']['grid_search'][0]
|
||||
optimizer = A_params['optimizer']['grid_search'][0](A_params['lr']['grid_search'][0])
|
||||
|
||||
A = Model('a', epochs=1)
|
||||
A.prepare_for_use(
|
||||
Temp = Model('temp', epochs=1)
|
||||
Temp.prepare_for_use(
|
||||
batch_size=batch_size,
|
||||
layers=layers,
|
||||
dataset_fn=dataframe_to_dataset_temp_precip,
|
||||
dataset_fn=dataframe_to_dataset_temp,
|
||||
optimizer=optimizer,
|
||||
out_activation=None,
|
||||
loss='mse',
|
||||
metrics=['mae']
|
||||
)
|
||||
A.restore(checkpoint)
|
||||
predicted_temps(A, year=year)
|
||||
Temp.restore(checkpoint)
|
||||
predicted_temps(Temp, year=year)
|
||||
|
||||
def predicted_precips_cmd(checkpoint='checkpoints/precip.h5', year=2000):
|
||||
batch_size = A_params['batch_size']['grid_search'][0]
|
||||
layers = A_params['layers']['grid_search'][0]
|
||||
optimizer = A_params['optimizer']['grid_search'][0](A_params['lr']['grid_search'][0])
|
||||
|
||||
Precip = Model('precip', epochs=1)
|
||||
Precip.prepare_for_use(
|
||||
batch_size=batch_size,
|
||||
layers=layers,
|
||||
dataset_fn=dataframe_to_dataset_temp,
|
||||
optimizer=optimizer,
|
||||
out_activation=None,
|
||||
loss='mse',
|
||||
metrics=['mae']
|
||||
)
|
||||
Precip.restore(checkpoint)
|
||||
predicted_precips(Precip, year=year)
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire({ 'map': predicted_map_cmd, 'temp': predicted_temps_cmd })
|
||||
fire.Fire({ 'map': predicted_map_cmd, 'temp': predicted_temps_cmd, 'precip': predicted_precips_cmd })
|
||||
|
||||
|
@ -53,11 +53,11 @@ A_params = {
|
||||
#'optimizer': tune.grid_search([tf.keras.optimizers.RMSprop])
|
||||
}
|
||||
|
||||
class TuneA(tune.Trainable):
|
||||
class TuneTemp(tune.Trainable):
|
||||
def _setup(self, config):
|
||||
logger.debug('Ray Tune model configuration %s', config)
|
||||
|
||||
self.model = Model('a', epochs=1)
|
||||
self.model = Model('temp', epochs=1)
|
||||
|
||||
optimizer = config['optimizer']
|
||||
optimizer = config['optimizer'](lr=config['lr'])
|
||||
@ -68,7 +68,46 @@ class TuneA(tune.Trainable):
|
||||
layers=config['layers'],
|
||||
optimizer=optimizer,
|
||||
out_activation=None,
|
||||
dataset_fn=dataframe_to_dataset_temp_precip,
|
||||
dataset_fn=dataframe_to_dataset_temp,
|
||||
loss='mse',
|
||||
metrics=['mae']
|
||||
)
|
||||
|
||||
def _train(self):
|
||||
logs = self.model.train(self.config)
|
||||
|
||||
print(logs.history)
|
||||
metrics = {
|
||||
'loss': logs.history['loss'][0],
|
||||
'mae': logs.history['mean_absolute_error'][0],
|
||||
'val_loss': logs.history['val_loss'][0],
|
||||
'val_mae': logs.history['val_mean_absolute_error'][0],
|
||||
}
|
||||
|
||||
return metrics
|
||||
|
||||
def _save(self, checkpoint_dir):
|
||||
return self.model.save(checkpoint_dir)
|
||||
|
||||
def _restore(self, path):
|
||||
return self.model.restore(path)
|
||||
|
||||
class TunePrecip(tune.Trainable):
|
||||
def _setup(self, config):
|
||||
logger.debug('Ray Tune model configuration %s', config)
|
||||
|
||||
self.model = Model('precip', epochs=1)
|
||||
|
||||
optimizer = config['optimizer']
|
||||
optimizer = config['optimizer'](lr=config['lr'])
|
||||
|
||||
self.model.prepare_for_use(
|
||||
df=df,
|
||||
batch_size=config['batch_size'],
|
||||
layers=config['layers'],
|
||||
optimizer=optimizer,
|
||||
out_activation=None,
|
||||
dataset_fn=dataframe_to_dataset_precip,
|
||||
loss='mse',
|
||||
metrics=['mae']
|
||||
)
|
||||
@ -95,8 +134,11 @@ class TuneA(tune.Trainable):
|
||||
def start_tuning(model, cpu=1, gpu=2, checkpoint_freq=1, checkpoint_at_end=True, resume=False, restore=None, stop=500):
|
||||
ray.init()
|
||||
|
||||
if model == 'a':
|
||||
t = TuneA
|
||||
if model == 'temp':
|
||||
t = TuneTemp
|
||||
params = A_params
|
||||
elif model == 'precip':
|
||||
t = TunePrecip
|
||||
params = A_params
|
||||
else:
|
||||
t = TuneB
|
||||
@ -112,6 +154,7 @@ def start_tuning(model, cpu=1, gpu=2, checkpoint_freq=1, checkpoint_at_end=True,
|
||||
checkpoint_at_end=checkpoint_at_end,
|
||||
checkpoint_freq=checkpoint_freq,
|
||||
restore=restore,
|
||||
max_failures=-1,
|
||||
stop={
|
||||
'training_iteration': stop
|
||||
})
|
||||
|
@ -76,13 +76,13 @@ def dataframe_to_dataset_biomes(df):
|
||||
logger.debug('dataset size: rows=%d, input_columns=%d, num_classes=%d', int(tf_inputs.shape[0]), input_columns, num_classes)
|
||||
return int(tf_inputs.shape[0]), input_columns, num_classes, class_weights, tf.data.Dataset.from_tensor_slices((tf_inputs, tf_output))
|
||||
|
||||
def dataframe_to_dataset_temp_precip(df):
|
||||
def dataframe_to_dataset_temp(df):
|
||||
rows = df.shape[0]
|
||||
|
||||
# elevation, distance_to_water, latitude, mean_temp, mean_precip
|
||||
input_columns = 5
|
||||
# (temp, precip) * 4 seasons
|
||||
num_classes = 8
|
||||
# elevation, distance_to_water, latitude, mean_temp
|
||||
input_columns = 4
|
||||
# 4 seasons
|
||||
num_classes = 4
|
||||
|
||||
tf_inputs = np.empty((0, input_columns))
|
||||
tf_output = np.empty((0, num_classes))
|
||||
@ -91,11 +91,37 @@ def dataframe_to_dataset_temp_precip(df):
|
||||
local_inputs = list(INPUTS)
|
||||
local_df = df[local_inputs]
|
||||
all_temps = ['temp_{}_{}'.format(season, year) for season in SEASONS]
|
||||
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
|
||||
local_df.loc[:, 'mean_temp'] = np.mean(df[all_temps].values)
|
||||
|
||||
output = all_temps
|
||||
|
||||
tf_inputs = np.concatenate((tf_inputs, local_df.values), axis=0)
|
||||
tf_output = np.concatenate((tf_output, df[output].values), axis=0)
|
||||
|
||||
tf_inputs = tf.cast(normalize_ndarray(tf_inputs), tf.float32)
|
||||
tf_output = tf.cast(normalize_ndarray(tf_output), tf.float32)
|
||||
|
||||
logger.debug('dataset size: rows=%d, input_columns=%d, num_classes=%d', int(tf_inputs.shape[0]), input_columns, num_classes)
|
||||
return int(tf_inputs.shape[0]), input_columns, num_classes, None, tf.data.Dataset.from_tensor_slices((tf_inputs, tf_output))
|
||||
|
||||
def dataframe_to_dataset_precip(df):
|
||||
rows = df.shape[0]
|
||||
|
||||
# elevation, distance_to_water, latitude, mean_precip
|
||||
input_columns = 4
|
||||
# 4 seasons
|
||||
num_classes = 4
|
||||
|
||||
tf_inputs = np.empty((0, input_columns))
|
||||
tf_output = np.empty((0, num_classes))
|
||||
|
||||
for year in range(MIN_YEAR, MAX_YEAR + 1):
|
||||
local_inputs = list(INPUTS)
|
||||
local_df = df[local_inputs]
|
||||
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
|
||||
local_df.loc[:, 'mean_precip'] = np.mean(df[all_precips].values)
|
||||
|
||||
output = all_temps + all_precips
|
||||
output = all_precips
|
||||
|
||||
tf_inputs = np.concatenate((tf_inputs, local_df.values), axis=0)
|
||||
tf_output = np.concatenate((tf_output, df[output].values), axis=0)
|
||||
|
Loading…
x
Reference in New Issue
Block a user