feat(nn): first model for predicting temp and precip
This commit is contained in:
parent
c490f2006b
commit
0d9a0068b1
47
nn.py
47
nn.py
@ -16,14 +16,45 @@ tf.enable_eager_execution()
|
||||
df = pd.read_pickle('data_final.p')
|
||||
# print(df.head())
|
||||
|
||||
# dataset = dataframe_to_dataset_biomes(df)
|
||||
dataset = dataframe_to_dataset_temp_precip(df)
|
||||
BATCH_SIZE = 15
|
||||
SHUFFLE_BUFFER_SIZE = 100
|
||||
LEARNING_RATE = 0.001
|
||||
|
||||
i = 0
|
||||
for feature, target in dataset:
|
||||
i += 1
|
||||
if i > 10:
|
||||
break
|
||||
print('{} => {}'.format(feature, target))
|
||||
# dataset = dataframe_to_dataset_biomes(df)
|
||||
dataset_size, features, dataset = dataframe_to_dataset_temp_precip(df)
|
||||
print(dataset_size)
|
||||
dataset = dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE).repeat()
|
||||
TRAIN_SIZE = dataset_size * 0.85
|
||||
TEST_SIZE = dataset_size - TRAIN_SIZE
|
||||
(training, test) = (dataset.take(TRAIN_SIZE), dataset.skip(TRAIN_SIZE))
|
||||
|
||||
print(training.make_one_shot_iterator().get_next())
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(32, activation=tf.nn.relu, input_shape=[features]),
|
||||
keras.layers.Dense(32, activation=tf.nn.relu),
|
||||
keras.layers.Dense(2)
|
||||
])
|
||||
|
||||
optimizer = tf.train.AdamOptimizer(LEARNING_RATE)
|
||||
|
||||
model.compile(loss='mse',
|
||||
optimizer=optimizer,
|
||||
metrics=['mae'])
|
||||
|
||||
model.summary()
|
||||
|
||||
EPOCHS = 1000
|
||||
|
||||
history = model.fit(
|
||||
training,
|
||||
epochs=EPOCHS,
|
||||
verbose=1,
|
||||
steps_per_epoch=int(dataset_size / BATCH_SIZE)
|
||||
)
|
||||
|
||||
# i = 0
|
||||
# for feature, target in dataset:
|
||||
# print('{} => {}'.format(feature, target))
|
||||
|
||||
print(tf.__version__)
|
||||
|
4
utils.py
4
utils.py
@ -51,7 +51,7 @@ def dataframe_to_dataset_biomes(df):
|
||||
tf_inputs = tf.cast(normalize_ndarray(tf_inputs), tf.float32)
|
||||
tf_output = tf.cast(normalize_ndarray(tf_output), tf.int32)
|
||||
|
||||
return tf.data.Dataset.from_tensor_slices((tf_inputs, tf_output))
|
||||
return int(tf_inputs.shape[0]), 5, tf.data.Dataset.from_tensor_slices((tf_inputs, tf_output))
|
||||
|
||||
def dataframe_to_dataset_temp_precip(df):
|
||||
rows = df.shape[0]
|
||||
@ -81,5 +81,5 @@ def dataframe_to_dataset_temp_precip(df):
|
||||
tf_inputs = tf.cast(normalize_ndarray(tf_inputs), tf.float32)
|
||||
tf_output = tf.cast(normalize_ndarray(tf_output), tf.float32)
|
||||
|
||||
return tf.data.Dataset.from_tensor_slices((tf_inputs, tf_output))
|
||||
return int(tf_inputs.shape[0]), 5, tf.data.Dataset.from_tensor_slices((tf_inputs, tf_output))
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user