feat(web): web server and basic dashboard
This commit is contained in:
parent
8d4010b5dc
commit
e18fc7692b
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,5 +1,6 @@
|
||||
maps
|
||||
logs
|
||||
temp_logs
|
||||
checkpoints
|
||||
geodata
|
||||
*.p
|
||||
|
@ -135,10 +135,10 @@ class Model():
|
||||
def predict(self, a):
|
||||
return np.argmax(self.model.predict(a), axis=1)
|
||||
|
||||
def prepare_for_use(self, df=None, batch_size=DEFAULT_BUFFER_SIZE, layers=DEFAULT_LAYERS, out_activation=DEFAULT_OUT_ACTIVATION, loss=DEFAULT_LOSS, optimizer=DEFAULT_OPTIMIZER):
|
||||
def prepare_for_use(self, df=None, batch_size=DEFAULT_BUFFER_SIZE, layers=DEFAULT_LAYERS, out_activation=DEFAULT_OUT_ACTIVATION, loss=DEFAULT_LOSS, optimizer=DEFAULT_OPTIMIZER, dataset_fn=dataframe_to_dataset_biomes):
|
||||
if df is None:
|
||||
df = pd.read_pickle('data.p')
|
||||
self.prepare_dataset(df, dataframe_to_dataset_biomes, batch_size=batch_size)
|
||||
self.prepare_dataset(df, dataset_fn, batch_size=batch_size)
|
||||
self.create_model(layers=layers, out_activation=out_activation)
|
||||
self.compile(loss=loss, optimizer=optimizer)
|
||||
|
||||
|
90
biomes/train_temp.py
Normal file
90
biomes/train_temp.py
Normal file
@ -0,0 +1,90 @@
|
||||
import fire
|
||||
import ray
|
||||
import pandas as pd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from tensorflow import keras
|
||||
from utils import *
|
||||
from model import Model
|
||||
from constants import *
|
||||
|
||||
CHECKPOINT = 'checkpoints/temp.h5'
|
||||
|
||||
SEED = 1
|
||||
np.random.seed(SEED)
|
||||
df = pd.read_pickle('data.p')
|
||||
|
||||
dataset_size, x_columns, y_columns, dataset = dataframe_to_dataset_temp_precip(df)
|
||||
batch_size = 5
|
||||
epochs = 500
|
||||
|
||||
def baseline_model():
|
||||
model = keras.models.Sequential()
|
||||
params = {
|
||||
'kernel_initializer': 'lecun_uniform',
|
||||
'bias_initializer': 'zeros',
|
||||
}
|
||||
model.add(keras.layers.Dense(x_columns, input_dim=x_columns, **params, activation='elu'))
|
||||
model.add(keras.layers.Dense(6, **params, activation='relu'))
|
||||
model.add(keras.layers.Dense(y_columns, **params))
|
||||
|
||||
model.compile(loss='mse', optimizer='adam', metrics=['mae'])
|
||||
return model
|
||||
|
||||
model = baseline_model()
|
||||
model.summary()
|
||||
|
||||
dataset = dataset.shuffle(500)
|
||||
TRAIN_SIZE = int(dataset_size * 0.85)
|
||||
TEST_SIZE = dataset_size - TRAIN_SIZE
|
||||
(training, test) = (dataset.take(TRAIN_SIZE),
|
||||
dataset.skip(TRAIN_SIZE))
|
||||
training_batched = training.batch(batch_size).repeat()
|
||||
test_batched = test.batch(batch_size).repeat()
|
||||
|
||||
logger.debug('Model dataset info: size=%s, train=%s, test=%s', dataset_size, TRAIN_SIZE, TEST_SIZE)
|
||||
|
||||
# model.load_weights(CHECKPOINT)
|
||||
|
||||
def predict():
|
||||
columns = INPUTS
|
||||
|
||||
YEAR = 2000
|
||||
|
||||
print(columns)
|
||||
print(df[0:batch_size])
|
||||
inputs = df[columns].to_numpy()
|
||||
inputs = normalize_ndarray(inputs, df[columns].to_numpy())
|
||||
print(inputs[0:batch_size])
|
||||
|
||||
out_columns = []
|
||||
for season in SEASONS:
|
||||
out_columns += ['temp_{}_{}'.format(season, YEAR), 'precip_{}_{}'.format(season, YEAR)]
|
||||
|
||||
print(out_columns)
|
||||
|
||||
out = model.predict(inputs)
|
||||
print(out)
|
||||
print(df[out_columns][0:batch_size])
|
||||
print(denormalize(out, df[out_columns].to_numpy()))
|
||||
|
||||
def train():
|
||||
tfb_callback = tf.keras.callbacks.TensorBoard(batch_size=batch_size, log_dir='temp_logs')
|
||||
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=CHECKPOINT, monitor='val_loss')
|
||||
|
||||
model.fit(training_batched,
|
||||
batch_size=batch_size,
|
||||
epochs=epochs,
|
||||
steps_per_epoch=int(TRAIN_SIZE / batch_size),
|
||||
validation_data=test_batched,
|
||||
validation_steps=int(TEST_SIZE / batch_size),
|
||||
callbacks=[tfb_callback, checkpoint_callback],
|
||||
verbose=1)
|
||||
|
||||
model.save_weights(CHECKPOINT)
|
||||
|
||||
# train()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire({ 'predict': predict, 'train': train })
|
@ -16,7 +16,13 @@ def normalize(v, o=None):
|
||||
o = v
|
||||
return (v - np.mean(o)) / np.std(o)
|
||||
|
||||
def normalize_ndarray(ar, o=None):
|
||||
def denormalize(v, o=None):
|
||||
if o is None:
|
||||
o = v
|
||||
|
||||
return (v * np.std(o) + np.mean(o))
|
||||
|
||||
def on_ndarray(ar, o=None, fn=None):
|
||||
if o is None:
|
||||
o = ar
|
||||
|
||||
@ -24,11 +30,17 @@ def normalize_ndarray(ar, o=None):
|
||||
tr = np.transpose(ar)
|
||||
to = np.transpose(o)
|
||||
for i in range(tr.shape[0]):
|
||||
tr[i] = normalize(tr[i], to[i])
|
||||
tr[i] = fn(tr[i], to[i])
|
||||
|
||||
# transpose back
|
||||
return np.transpose(tr)
|
||||
|
||||
def normalize_ndarray(ar, o=None):
|
||||
return on_ndarray(ar, o=o, fn=normalize)
|
||||
|
||||
def denormalize_ndarray(ar, o=None):
|
||||
return on_ndarray(ar, o=o, fn=denormalize)
|
||||
|
||||
def dataframe_to_dataset_biomes(df):
|
||||
rows = df.shape[0]
|
||||
|
||||
@ -67,26 +79,27 @@ def dataframe_to_dataset_biomes(df):
|
||||
def dataframe_to_dataset_temp_precip(df):
|
||||
rows = df.shape[0]
|
||||
|
||||
# elevation, distance_to_water, latitude
|
||||
# season, year
|
||||
# elevation, distance_to_water, latitude, mean_temp, mean_precip
|
||||
input_columns = 5
|
||||
num_classes = 2
|
||||
# (temp, precip) * 4 seasons
|
||||
num_classes = 8
|
||||
|
||||
tf_inputs = np.empty((0, input_columns))
|
||||
tf_output = np.empty((0, num_classes))
|
||||
|
||||
for year in range(MIN_YEAR, MAX_YEAR + 1):
|
||||
local_inputs = list(INPUTS)
|
||||
local_df = df[local_inputs]
|
||||
all_temps = ['temp_{}_{}'.format(season, year) for season in SEASONS]
|
||||
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
|
||||
local_df.loc[:, 'mean_temp'] = np.mean(df[all_temps].values)
|
||||
local_df.loc[:, 'mean_precip'] = np.mean(df[all_precips].values)
|
||||
output = []
|
||||
|
||||
for idx, season in enumerate(SEASONS):
|
||||
season_index = idx / len(season)
|
||||
local_df = df[local_inputs]
|
||||
local_df.loc[:, 'season'] = pd.Series(np.repeat(season_index, rows), index=local_df.index)
|
||||
local_df.loc[:, 'year'] = pd.Series(np.repeat(year, rows), index=local_df.index)
|
||||
output = all_temps + all_precips
|
||||
|
||||
output = ['temp_{}_{}'.format(season, year), 'precip_{}_{}'.format(season, year)]
|
||||
tf_inputs = np.concatenate((tf_inputs, local_df.values), axis=0)
|
||||
tf_output = np.concatenate((tf_output, df[output].values), axis=0)
|
||||
tf_inputs = np.concatenate((tf_inputs, local_df.values), axis=0)
|
||||
tf_output = np.concatenate((tf_output, df[output].values), axis=0)
|
||||
|
||||
tf_inputs = tf.cast(normalize_ndarray(tf_inputs), tf.float32)
|
||||
tf_output = tf.cast(tf_output, tf.float32)
|
||||
|
@ -4,6 +4,8 @@ from matplotlib import colors, cm
|
||||
import scipy.interpolate as interpolate
|
||||
from scipy import ndimage
|
||||
import math
|
||||
from io import BytesIO
|
||||
import base64
|
||||
|
||||
WIDTH = 900
|
||||
HEIGHT = 450
|
||||
@ -27,21 +29,8 @@ GROUND_PROPORTION = 1 - WATER_PROPORTION
|
||||
DIRECTIONS = [(-1, -1), (-1, 0), (-1, 1), (1, 1), (1, 0), (1, -1), (0, -1), (0, 1)]
|
||||
|
||||
def s(x):
|
||||
# return x
|
||||
return -2 * x**3 + 3 * x**2
|
||||
|
||||
# class Point(object):
|
||||
# def __init__(self, x, y, z):
|
||||
# self.x = x
|
||||
# self.y = y
|
||||
# self.z = z
|
||||
|
||||
# def is_ground(self):
|
||||
# return self.z > WATER_LEVEL
|
||||
|
||||
# def is_water(self):
|
||||
# return not(self.is_ground())
|
||||
|
||||
def is_ground(value):
|
||||
return value > WATER_LEVEL
|
||||
|
||||
@ -156,7 +145,7 @@ def constant_filter(a):
|
||||
return max(1, a[0])
|
||||
return 0
|
||||
|
||||
def generate_map(width, height, continents=4):
|
||||
def generate_map(width=WIDTH, height=HEIGHT, continents=4):
|
||||
ground = np.zeros((width, height))
|
||||
ground_size = width * height * GROUND_PROPORTION
|
||||
|
||||
@ -181,12 +170,16 @@ def generate_map(width, height, continents=4):
|
||||
ground = ndimage.gaussian_filter(ground, sigma=4)
|
||||
ground = ndimage.generic_filter(ground, constant_filter, size=1)
|
||||
print(np.min(ground), np.max(ground), MAX_ELEVATION)
|
||||
|
||||
print(np.unique(ground))
|
||||
|
||||
plt.imshow(ground.T, cmap=greys, norm=norm)
|
||||
plt.show()
|
||||
|
||||
figfile = BytesIO()
|
||||
plt.savefig(figfile, format='png')
|
||||
figfile.seek(0)
|
||||
|
||||
return figfile
|
||||
|
||||
if __name__ == "__main__":
|
||||
generate_map(WIDTH, HEIGHT)
|
||||
plt.show()
|
||||
|
0
map-generator/requirements.txt
Normal file
0
map-generator/requirements.txt
Normal file
7
map-generator/static/bootstrap.min.css
vendored
Normal file
7
map-generator/static/bootstrap.min.css
vendored
Normal file
File diff suppressed because one or more lines are too long
1
map-generator/static/bootstrap.min.css.map
Normal file
1
map-generator/static/bootstrap.min.css.map
Normal file
File diff suppressed because one or more lines are too long
7
map-generator/static/bootstrap.min.js
vendored
Normal file
7
map-generator/static/bootstrap.min.js
vendored
Normal file
File diff suppressed because one or more lines are too long
1
map-generator/static/bootstrap.min.js.map
Normal file
1
map-generator/static/bootstrap.min.js.map
Normal file
File diff suppressed because one or more lines are too long
18
map-generator/static/script.js
Normal file
18
map-generator/static/script.js
Normal file
@ -0,0 +1,18 @@
|
||||
const mapSettings = document.getElementById('map-settings');
|
||||
//const board = document.getElementById('board');
|
||||
const map = document.getElementById('map');
|
||||
const spinner = document.getElementById('spinner');
|
||||
|
||||
mapSettings.addEventListener('submit', (e) => {
|
||||
console.log('form submit');
|
||||
e.preventDefault();
|
||||
|
||||
spinner.classList.remove('d-none');
|
||||
map.src = '/map?q=' + (new Date()).getTime();
|
||||
map.classList.add('d-none');
|
||||
});
|
||||
|
||||
map.addEventListener('load', () => {
|
||||
spinner.classList.add('d-none');
|
||||
map.classList.remove('d-none');
|
||||
});
|
14
map-generator/static/style.css
Normal file
14
map-generator/static/style.css
Normal file
@ -0,0 +1,14 @@
|
||||
* {
|
||||
box-sizing: border-box;
|
||||
}
|
||||
|
||||
html, body {
|
||||
margin: 0;
|
||||
}
|
||||
|
||||
aside {
|
||||
text-align: center;
|
||||
width: 300px;
|
||||
height: 100vh;
|
||||
}
|
||||
|
65
map-generator/templates/index.html
Normal file
65
map-generator/templates/index.html
Normal file
@ -0,0 +1,65 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<title>World Map Generator</title>
|
||||
<link rel='stylesheet' href="{{ url_for('static', filename='style.css') }}">
|
||||
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
|
||||
</head>
|
||||
<body class='container-fluid'>
|
||||
<div class='row'>
|
||||
<main class='col d-flex justify-content-center align-items-center'>
|
||||
<!-- <canvas id='board'></canvas> -->
|
||||
<img src='/map' id='map'>
|
||||
|
||||
<div class='spinner-border text-primary' role='status' id='spinner'>
|
||||
<span class='sr-only'>Loading...</span>
|
||||
</div>
|
||||
</main>
|
||||
|
||||
<aside class='col-3 px-4 bg-dark text-light text-center py-3'>
|
||||
<h3>World Map Generator</h3>
|
||||
|
||||
<div class='panel px-4'>
|
||||
<form class='mt-5' id='map-settings'>
|
||||
<div class='form-group'>
|
||||
<label name='preset'>Preset</label>
|
||||
<select id='preset' name='preset' class='form-control'>
|
||||
<option value='desert'>Desert</option>
|
||||
<option value='forest'>Forest</option>
|
||||
</select>
|
||||
</div>
|
||||
|
||||
<div class='form-group'>
|
||||
<label name='mean-temperature'>Mean Temperature</label>
|
||||
<input id='mean-temperature' name='mean-temperature' type='range' min='-50' max='50' class='form-control'>
|
||||
</div>
|
||||
|
||||
<div class='form-group'>
|
||||
<label name='mean-precipitation'>Mean Precipitation</label>
|
||||
<input id='mean-precipitation' name='mean-precipitation' type='range' min='-50' max='50' class='form-control'>
|
||||
</div>
|
||||
|
||||
<div class='form-group'>
|
||||
<label name='min-elevation'>Minimum Elevation</label>
|
||||
<input id='min-elevation' name='min-elevation' type='range' min='-100' max='100' class='form-control'>
|
||||
</div>
|
||||
|
||||
<div class='form-group'>
|
||||
<label name='max-elevation'>Maximum Elevation</label>
|
||||
<input id='max-elevation' name='max-elevation' type='range' min='-100' max='100' class='form-control'>
|
||||
</div>
|
||||
|
||||
<button type="submit" class="btn btn-primary">Generate</button>
|
||||
</form>
|
||||
</div>
|
||||
</aside>
|
||||
</div>
|
||||
|
||||
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1" crossorigin="anonymous"></script>
|
||||
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js" integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM" crossorigin="anonymous"></script>
|
||||
<script src="{{ url_for('static', filename='script.js') }}"></script>
|
||||
</body>
|
||||
</html>
|
13
map-generator/web.py
Normal file
13
map-generator/web.py
Normal file
@ -0,0 +1,13 @@
|
||||
from flask import Flask, render_template, make_response, send_file
|
||||
from index import generate_map
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
@app.route('/')
|
||||
def index():
|
||||
return render_template('index.html')
|
||||
|
||||
@app.route('/map')
|
||||
def get_map():
|
||||
res = send_file(generate_map(), mimetype='image/png')
|
||||
return res
|
Loading…
x
Reference in New Issue
Block a user