fix(regression): prediction for temps model
This commit is contained in:
parent
b192531a2a
commit
cbe8e7dd20
@ -24,6 +24,7 @@ DEFAULT_BUFFER_SIZE=500
|
||||
DEFAULT_OUT_ACTIVATION = tf.nn.softmax
|
||||
DEFAULT_LOSS = 'sparse_categorical_crossentropy'
|
||||
DEFAULT_OPTIMIZER = tf.keras.optimizers.Adam(lr=0.001)
|
||||
DEFAULT_METRICS = ['accuracy']
|
||||
|
||||
class Model():
|
||||
def __init__(self, name, epochs=1):
|
||||
@ -84,7 +85,7 @@ class Model():
|
||||
keras.layers.Dense(self.output_size, activation=out_activation, **params)
|
||||
])
|
||||
|
||||
def compile(self, loss=DEFAULT_LOSS, metrics=['accuracy'], optimizer=DEFAULT_OPTIMIZER):
|
||||
def compile(self, loss=DEFAULT_LOSS, metrics=DEFAULT_METRICS, optimizer=DEFAULT_OPTIMIZER):
|
||||
logger.debug('Model loss function: %s', loss)
|
||||
logger.debug('Model optimizer: %s', optimizer)
|
||||
logger.debug('Model metrics: %s', metrics)
|
||||
@ -136,13 +137,16 @@ class Model():
|
||||
|
||||
return out
|
||||
|
||||
def predict(self, a):
|
||||
def predict_class(self, a):
|
||||
return np.argmax(self.model.predict(a), axis=1)
|
||||
|
||||
def prepare_for_use(self, df=None, batch_size=DEFAULT_BUFFER_SIZE, layers=DEFAULT_LAYERS, out_activation=DEFAULT_OUT_ACTIVATION, loss=DEFAULT_LOSS, optimizer=DEFAULT_OPTIMIZER, dataset_fn=dataframe_to_dataset_biomes):
|
||||
def predict(self, a):
|
||||
return self.model.predict(a)
|
||||
|
||||
def prepare_for_use(self, df=None, batch_size=DEFAULT_BUFFER_SIZE, layers=DEFAULT_LAYERS, out_activation=DEFAULT_OUT_ACTIVATION, loss=DEFAULT_LOSS, optimizer=DEFAULT_OPTIMIZER, dataset_fn=dataframe_to_dataset_biomes, metrics=DEFAULT_METRICS):
|
||||
if df is None:
|
||||
df = pd.read_pickle('data.p')
|
||||
self.prepare_dataset(df, dataset_fn, batch_size=batch_size)
|
||||
self.create_model(layers=layers, out_activation=out_activation)
|
||||
self.compile(loss=loss, optimizer=optimizer)
|
||||
self.compile(loss=loss, optimizer=optimizer, metrics=metrics)
|
||||
|
||||
|
@ -6,6 +6,7 @@ from utils import *
|
||||
from constants import INPUTS
|
||||
from model import Model
|
||||
from draw import draw
|
||||
from train import A_params
|
||||
|
||||
def predicted_map(B, change=0, path=None):
|
||||
year = MAX_YEAR - 1
|
||||
@ -36,7 +37,7 @@ def predicted_map(B, change=0, path=None):
|
||||
if chunk.shape[0] < B.batch_size:
|
||||
continue
|
||||
input_data = chunk.loc[:, inputs].values
|
||||
out = B.predict(input_data)
|
||||
out = B.predict_class(input_data)
|
||||
|
||||
f = pd.DataFrame({
|
||||
'longitude': chunk_original.loc[:, 'longitude'],
|
||||
@ -53,6 +54,54 @@ def predicted_map_cmd(checkpoint='checkpoints/save.h5', change=0, path=None):
|
||||
B.restore(checkpoint)
|
||||
predicted_map(B, change=change, path=path)
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(predicted_map_cmd)
|
||||
def predicted_temps(A, year=2000):
|
||||
columns = INPUTS
|
||||
|
||||
df = pd.read_pickle('data.p')
|
||||
|
||||
print(columns)
|
||||
# print(df[0:A.batch_size])
|
||||
inputs = df[INPUTS]
|
||||
|
||||
all_temps = ['temp_{}_{}'.format(season, year) for season in SEASONS]
|
||||
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
|
||||
inputs.loc[:, 'mean_temp'] = np.mean(df[all_temps].values)
|
||||
inputs.loc[:, 'mean_precip'] = np.mean(df[all_precips].values)
|
||||
|
||||
inputs = inputs.to_numpy()
|
||||
inputs = normalize_ndarray(inputs)
|
||||
print(inputs[0:A.batch_size])
|
||||
|
||||
out_columns = all_temps + all_precips
|
||||
print(out_columns)
|
||||
|
||||
out = A.predict(inputs)
|
||||
# print(out.shape, out[0].shape)
|
||||
# print(out)
|
||||
# print(out[0])
|
||||
print(normalize_ndarray(df[out_columns])[0:A.batch_size])
|
||||
print(pd.DataFrame(data=out, columns=out_columns))
|
||||
# print(df[out_columns][0:A.batch_size])
|
||||
# print(pd.DataFrame(data=denormalize(out, df[out_columns].to_numpy()), columns=out_columns))
|
||||
|
||||
def predicted_temps_cmd(checkpoint='checkpoints/a.h5', year=2000):
|
||||
batch_size = A_params['batch_size']['grid_search'][0]
|
||||
layers = A_params['layers']['grid_search'][0]
|
||||
optimizer = A_params['optimizer']['grid_search'][0](A_params['lr']['grid_search'][0])
|
||||
|
||||
A = Model('a', epochs=1)
|
||||
A.prepare_for_use(
|
||||
batch_size=batch_size,
|
||||
layers=layers,
|
||||
dataset_fn=dataframe_to_dataset_temp_precip,
|
||||
optimizer=optimizer,
|
||||
out_activation=None,
|
||||
loss='mse',
|
||||
metrics=['mae']
|
||||
)
|
||||
A.restore(checkpoint)
|
||||
predicted_temps(A, year=year)
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire({ 'map': predicted_map_cmd, 'temp': predicted_temps_cmd })
|
||||
|
||||
|
@ -46,10 +46,11 @@ class TuneB(tune.Trainable):
|
||||
return self.model.restore(path)
|
||||
|
||||
A_params = {
|
||||
'batch_size': tune.grid_search([128]),
|
||||
'batch_size': tune.grid_search([256]),
|
||||
'layers': tune.grid_search([[64, 64]]),
|
||||
'lr': tune.grid_search([1e-4]),
|
||||
'lr': tune.grid_search([3e-4]),
|
||||
'optimizer': tune.grid_search([tf.keras.optimizers.Adam]),
|
||||
#'optimizer': tune.grid_search([tf.keras.optimizers.RMSprop])
|
||||
}
|
||||
|
||||
class TuneA(tune.Trainable):
|
||||
@ -66,18 +67,21 @@ class TuneA(tune.Trainable):
|
||||
batch_size=config['batch_size'],
|
||||
layers=config['layers'],
|
||||
optimizer=optimizer,
|
||||
out_activation=None,
|
||||
dataset_fn=dataframe_to_dataset_temp_precip,
|
||||
loss='mse'
|
||||
loss='mse',
|
||||
metrics=['mae']
|
||||
)
|
||||
|
||||
def _train(self):
|
||||
logs = self.model.train(self.config)
|
||||
|
||||
print(logs.history)
|
||||
metrics = {
|
||||
'mean_accuracy': logs.history['acc'][0],
|
||||
'loss': logs.history['loss'][0],
|
||||
'val_accuracy': logs.history['val_acc'][0],
|
||||
'mae': logs.history['mean_absolute_error'][0],
|
||||
'val_loss': logs.history['val_loss'][0],
|
||||
'val_mae': logs.history['val_mean_absolute_error'][0],
|
||||
}
|
||||
|
||||
return metrics
|
||||
|
@ -94,7 +94,6 @@ def dataframe_to_dataset_temp_precip(df):
|
||||
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
|
||||
local_df.loc[:, 'mean_temp'] = np.mean(df[all_temps].values)
|
||||
local_df.loc[:, 'mean_precip'] = np.mean(df[all_precips].values)
|
||||
output = []
|
||||
|
||||
output = all_temps + all_precips
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user