Mahdi Dibaiee
|
d9d24f69a6
|
feat(blogs-corpus): new corpus for word2vec
|
2016-09-19 16:00:45 +04:30 |
|
Mahdi Dibaiee
|
f16cc26798
|
perf(word2vec): better word2vec
|
2016-09-16 18:46:21 +04:30 |
|
Mahdi Dibaiee
|
6def5f6197
|
draw chart using simple options
|
2016-09-16 14:16:14 +04:30 |
|
Mahdi Dibaiee
|
0d43814448
|
fix(word2vec): simple example of word2vec
|
2016-09-16 14:03:15 +04:30 |
|
Mahdi Dibaiee
|
d4ac90bbd5
|
rm(sin): remove sin example
fix(ignoreBiases): was ignoring nodes, lol
fix(w2v): better logging and implementation
|
2016-09-16 13:31:23 +04:30 |
|
Mahdi Dibaiee
|
c0083f5c05
|
fix(notmnist): notmnist sigmoid chart with 10 epochs
|
2016-09-13 10:04:30 +04:30 |
|
Mahdi Dibaiee
|
6b9cb1fa3e
|
relu: run notmnist using relu activation and draw the chart
[wip] word2vec: work in progress implementation of word2vec
|
2016-09-13 09:49:44 +04:30 |
|
Mahdi Dibaiee
|
bcc22465d6
|
fix(xor): better learning rate
|
2016-09-10 19:21:52 +04:30 |
|
Mahdi Dibaiee
|
f379f208db
|
fix(crossEntropy): implement crossEntropy' to be used in output layer
fix(softmax'): softmax was not correct
|
2016-09-10 17:43:45 +04:30 |
|
Mahdi Dibaiee
|
58851611dc
|
chore(README): better readme, chart
|
2016-09-10 01:15:38 +04:30 |
|
Mahdi Dibaiee
|
b26347e19f
|
feat(notmnist): notmnist example using SGD + learning rate decay
|
2016-09-10 00:36:15 +04:30 |
|
Mahdi Dibaiee
|
25e44d3a8c
|
chore(data): doc-classifier-data
|
2016-08-21 01:02:45 +04:30 |
|
Mahdi Dibaiee
|
891f48a2d0
|
feat(topten): top-ten classification with evenly distrubuted data
|
2016-08-21 00:59:42 +04:30 |
|
Mahdi Dibaiee
|
eebf5e0222
|
feat(verbose): print more information using -v or --verbose flags
|
2016-08-08 12:35:26 +04:30 |
|
Mahdi Dibaiee
|
099c25e166
|
feat(stopwords): removeWords and removeStopwords functions as pre-processors
feat(confidence, WIP): calculate confidence of each classification
|
2016-08-08 10:02:26 +04:30 |
|
Mahdi Dibaiee
|
ea1f05f001
|
fix(naivebayes): fix the algorithm to make it actually work
feat(cleanDocuments): preprocess documents, use stemming and stopword elimination for better accuracy
|
2016-08-05 23:54:36 +04:30 |
|
Mahdi Dibaiee
|
3cf0625794
|
fix(precision): little bug in implementation
|
2016-07-30 16:52:34 +04:30 |
|
Mahdi Dibaiee
|
76e7e7faef
|
fix(recall, precision): little bug in calculations
feat(fmeasure): calculate fmeasure using recall and precision
|
2016-07-29 22:09:30 +04:30 |
|
Mahdi Dibaiee
|
b5b4629318
|
feat(results): accuracy, recall and precision functions used to calculate measures
fix: read data from another repository
|
2016-07-29 17:55:59 +04:30 |
|
Mahdi Dibaiee
|
26eb4531fa
|
feat(naivebayes): implement NaiveBayes algorithm
feat(example): a document classifier using NaiveBayes over reuters data
|
2016-07-29 16:16:44 +04:30 |
|
Mahdi Dibaiee
|
493a20eb0a
|
feat(crossEntropy): crossEntropy cost function
|
2016-07-24 10:48:04 +04:30 |
|
Mahdi Dibaiee
|
f5a0c23d99
|
feat(randomNetwork): generate random networks with a simple function
|
2016-07-18 17:07:12 +04:30 |
|
Mahdi Dibaiee
|
23851a85f5
|
fix(stack): use stack build and exec instead of manual stack ghc
refactor: rename from Lib to Sibe
|
2016-07-18 16:33:34 +04:30 |
|
Mahdi Dibaiee
|
4397f5203a
|
fix(train): fix an error in computing layer's error
feat(examples): add an example (xor)
|
2016-07-18 00:30:17 +04:30 |
|