feat(verbose): print more information using -v or --verbose flags
This commit is contained in:
parent
099c25e166
commit
eebf5e0222
@ -8,32 +8,55 @@ module Main
|
||||
import Debug.Trace
|
||||
import Data.List.Split
|
||||
import Control.Arrow ((&&&))
|
||||
import Control.Monad (when)
|
||||
import System.Environment
|
||||
|
||||
main = do
|
||||
args <- getArgs
|
||||
dataset <- readFile "examples/doc-classifier-data/data-reuters"
|
||||
test <- readFile "examples/doc-classifier-data/data-reuters-test"
|
||||
|
||||
classes <- map (filter (/= ' ')) . lines <$> readFile "examples/doc-classifier-data/data-classes"
|
||||
sws <- lines <$> readFile "examples/stopwords"
|
||||
|
||||
let verbose = or [elem "-v" args, elem "--verbose" args]
|
||||
when (not verbose) $ putStrLn "use --verbose to print more information"
|
||||
|
||||
let intClasses = [0..length classes - 1]
|
||||
documents = cleanDocuments $ removeWords sws $ createDocuments classes dataset
|
||||
testDocuments = cleanDocuments $ createDocuments classes test
|
||||
devTestDocuments = take 30 testDocuments
|
||||
nb = train documents intClasses
|
||||
|
||||
results = map (\(Document text c) -> (c, run text nb)) testDocuments
|
||||
-- results = map (\(Document text c) -> (c, run text nb)) devTestDocuments
|
||||
results = session testDocuments nb
|
||||
-- results = session devTestDocuments nb
|
||||
|
||||
print (text $ head documents)
|
||||
when verbose $ print (text $ head documents)
|
||||
|
||||
let showResults (c, (r, confidence)) = putStrLn (classes !! c ++ " ~ " ++ classes !! r)
|
||||
mapM_ showResults results
|
||||
when verbose $ mapM_ showResults results
|
||||
|
||||
putStrLn $ "Recall: " ++ show (recall results)
|
||||
putStrLn $ "Precision: " ++ show (precision results)
|
||||
putStrLn $ "F Measure: " ++ show (fmeasure results)
|
||||
putStrLn $ "Accuracy: " ++ show (accuracy results)
|
||||
when verbose $
|
||||
putStrLn $ "The training data is imbalanced which causes the classifier to be biased towards\n"
|
||||
++ "some classes, `earn` is an example, the class alone has around 90% accuracy while\n"
|
||||
++ "the rest of classes have a much lower accuracy and it's commonly seen that most inputs\n"
|
||||
++ "are incorrectly classified as `earn`.\n"
|
||||
|
||||
let
|
||||
accuracies =
|
||||
let as = zip intClasses $ map (\c -> filter ((==c) . fst) results) intClasses
|
||||
av = filter (not . null . snd) as
|
||||
calculated = map (fst &&& accuracy . snd) av
|
||||
in sortBy (\(_, a) (_, b) -> b `compare` a) calculated
|
||||
|
||||
when verbose $
|
||||
mapM_ (\(c, a) -> putStrLn $ "Accuracy(" ++ classes !! c ++ ") = " ++ show a) accuracies
|
||||
|
||||
putStrLn $ "\nAverages: "
|
||||
putStrLn $ "Recall = " ++ show (recall results)
|
||||
putStrLn $ "Precision = " ++ show (precision results)
|
||||
putStrLn $ "F Measure = " ++ show (fmeasure results)
|
||||
putStrLn $ "Accuracy = " ++ show (accuracy results)
|
||||
|
||||
createDocuments classes content =
|
||||
let splitted = splitOn (replicate 10 '-' ++ "\n") content
|
||||
|
@ -3,6 +3,7 @@ module Sibe.NaiveBayes
|
||||
NB(..),
|
||||
train,
|
||||
run,
|
||||
session,
|
||||
ordNub,
|
||||
accuracy,
|
||||
precision,
|
||||
@ -91,22 +92,30 @@ module Sibe.NaiveBayes
|
||||
grams = map (\(i, w) -> concat . intersperse "_" $ w:((take (n - 1) . drop (i+1)) ws)) pairs
|
||||
in unwords ("<b>":grams)
|
||||
|
||||
session :: [Document] -> NB -> [(Class, (Class, Double))]
|
||||
session docs nb =
|
||||
let results = map (\(Document text c) -> (c, run text nb)) docs
|
||||
in results
|
||||
|
||||
run :: String -> NB -> (Class, Double)
|
||||
run txt (NB documents classes vocabulary megadoc cd cw cgram) =
|
||||
let scores = map (score . fst) classes
|
||||
index = argmax scores
|
||||
m = maximum scores
|
||||
confidence = m / sum scores
|
||||
in (index, 0)
|
||||
in (index, m)
|
||||
where
|
||||
score c =
|
||||
let prior = snd (classes !! c)
|
||||
|
||||
-- below is the formula according to Multinominal Naive Bayes, but it seems
|
||||
-- using a uniform prior probability seems to work better
|
||||
-- using a uniform prior probability seems to work better when working with imbalanced
|
||||
-- training datasets, instead, we help rare classes get higher scores using
|
||||
-- alpha = (1 - prior * ALPHA)
|
||||
-- in prior * product (map (prob c) (words txt))
|
||||
|
||||
in product (map (prob c) (words txt))
|
||||
alpha = 1 - (log 1 + prior)
|
||||
|
||||
in alpha * product (map (prob c) (words txt))
|
||||
|
||||
prob c w =
|
||||
let tctM = find ((== w) . fst) (snd (cw !! c))
|
||||
|
Loading…
Reference in New Issue
Block a user