feat(randomNetwork): generate random networks with a simple function
This commit is contained in:
parent
23851a85f5
commit
f5a0c23d99
20
app/Main.hs
20
app/Main.hs
@ -5,20 +5,6 @@ import Numeric.LinearAlgebra
|
||||
import Data.List
|
||||
import Debug.Trace
|
||||
|
||||
-- 1x2
|
||||
-- 2x3 + 1x3
|
||||
-- 3x1 + 1x1
|
||||
|
||||
-- main :: IO [()]
|
||||
main =
|
||||
let learning_rate = 0.5
|
||||
ih = randomLayer 0 (2, 8)
|
||||
ho = randomLayer 1 (8, 1)
|
||||
network = ih :- O ho
|
||||
|
||||
inputs = [vector [0, 1], vector [1, 0], vector [1, 1], vector [0, 0]]
|
||||
labels = [vector [1], vector [1], vector [0], vector [0]]
|
||||
|
||||
updated_network = session inputs network labels learning_rate (2, 1000)
|
||||
results = map (`forward` updated_network) inputs
|
||||
in print results
|
||||
main = do
|
||||
putStrLn "Try the examples:"
|
||||
putStrLn "- stack exec example-xor"
|
||||
|
@ -4,28 +4,23 @@ module Main where
|
||||
import Data.List
|
||||
import Debug.Trace
|
||||
|
||||
-- 1x2
|
||||
-- 2x3 + 1x3
|
||||
-- 3x1 + 1x1
|
||||
|
||||
-- main :: IO [()]
|
||||
main =
|
||||
main = do
|
||||
let learning_rate = 0.5
|
||||
(iterations, epochs) = (2, 1000)
|
||||
ih = randomLayer 0 (2, 8)
|
||||
ho = randomLayer 1 (8, 1)
|
||||
network = ih :- O ho
|
||||
rnetwork = randomNetwork 0 2 [8] 1 -- two inputs, 8 nodes in a single hidden layer, 1 output
|
||||
|
||||
inputs = [vector [0, 1], vector [1, 0], vector [1, 1], vector [0, 0]]
|
||||
labels = [vector [1], vector [1], vector [0], vector [0]]
|
||||
|
||||
updated_network = session inputs network labels learning_rate (iterations, epochs)
|
||||
results = map (`forward` updated_network) inputs
|
||||
network = session inputs rnetwork labels learning_rate (iterations, epochs)
|
||||
results = map (`forward` network) inputs
|
||||
rounded = map (map round . toList) results
|
||||
in sequence [putStrLn $ "inputs: " ++ show inputs,
|
||||
putStrLn $ "labels: " ++ show labels,
|
||||
putStrLn $ "learning rate: " ++ show learning_rate,
|
||||
putStrLn $ "iterations/epochs: " ++ show (iterations, epochs),
|
||||
putStrLn "...",
|
||||
putStrLn $ "rounded result: " ++ show rounded,
|
||||
putStrLn $ "actual result: " ++ show results]
|
||||
|
||||
putStrLn "parameters: "
|
||||
putStrLn $ "- inputs: " ++ show inputs
|
||||
putStrLn $ "- labels: " ++ show labels
|
||||
putStrLn $ "- learning rate: " ++ show learning_rate
|
||||
putStrLn $ "- iterations/epochs: " ++ show (iterations, epochs)
|
||||
putStrLn "results: "
|
||||
putStrLn $ "- actual result: " ++ show results
|
||||
putStrLn $ "- rounded result: " ++ show rounded
|
||||
|
@ -10,6 +10,7 @@ module Sibe
|
||||
Output,
|
||||
forward,
|
||||
randomLayer,
|
||||
randomNetwork,
|
||||
train,
|
||||
session,
|
||||
shuffle,
|
||||
@ -45,6 +46,13 @@ module Sibe
|
||||
biases = randomVector seed Uniform wc * 2 - 1
|
||||
in L biases weights
|
||||
|
||||
randomNetwork :: Seed -> Int -> [Int] -> Int -> Network
|
||||
randomNetwork seed input [] output =
|
||||
O $ randomLayer seed (input, output)
|
||||
randomNetwork seed input (h:hs) output =
|
||||
randomLayer seed (input, h) :-
|
||||
randomNetwork (seed + 1) h hs output
|
||||
|
||||
logistic :: Double -> Double
|
||||
logistic x = 1 / (1 + exp (-x))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user