Mahdi Dibaiee
|
ed6d2b3021
|
feat(Numeric): move all modules to Numeric
|
2016-10-17 01:54:35 +03:30 |
|
Mahdi Dibaiee
|
b26347e19f
|
feat(notmnist): notmnist example using SGD + learning rate decay
|
2016-09-10 00:36:15 +04:30 |
|
Mahdi Dibaiee
|
891f48a2d0
|
feat(topten): top-ten classification with evenly distrubuted data
|
2016-08-21 00:59:42 +04:30 |
|
Mahdi Dibaiee
|
eebf5e0222
|
feat(verbose): print more information using -v or --verbose flags
|
2016-08-08 12:35:26 +04:30 |
|
Mahdi Dibaiee
|
099c25e166
|
feat(stopwords): removeWords and removeStopwords functions as pre-processors
feat(confidence, WIP): calculate confidence of each classification
|
2016-08-08 10:02:26 +04:30 |
|
Mahdi Dibaiee
|
ea1f05f001
|
fix(naivebayes): fix the algorithm to make it actually work
feat(cleanDocuments): preprocess documents, use stemming and stopword elimination for better accuracy
|
2016-08-05 23:54:36 +04:30 |
|
Mahdi Dibaiee
|
3cf0625794
|
fix(precision): little bug in implementation
|
2016-07-30 16:52:34 +04:30 |
|
Mahdi Dibaiee
|
76e7e7faef
|
fix(recall, precision): little bug in calculations
feat(fmeasure): calculate fmeasure using recall and precision
|
2016-07-29 22:09:30 +04:30 |
|
Mahdi Dibaiee
|
b5b4629318
|
feat(results): accuracy, recall and precision functions used to calculate measures
fix: read data from another repository
|
2016-07-29 17:55:59 +04:30 |
|
Mahdi Dibaiee
|
26eb4531fa
|
feat(naivebayes): implement NaiveBayes algorithm
feat(example): a document classifier using NaiveBayes over reuters data
|
2016-07-29 16:16:44 +04:30 |
|