sibe/examples/naivebayes-doc-classifier.hs
Mahdi Dibaiee 76e7e7faef fix(recall, precision): little bug in calculations
feat(fmeasure): calculate fmeasure using recall and precision
2016-07-29 22:09:30 +04:30

35 lines
1.3 KiB
Haskell

module Main
where
import Sibe
import Sibe.NaiveBayes
import Text.Printf
import Data.List
import Data.Maybe
import Debug.Trace
import Data.List.Split
main = do
dataset <- readFile "examples/doc-classifier-data/data-reuters"
test <- readFile "examples/doc-classifier-data/data-reuters-test"
classes <- map (filter (/= ' ')) . lines <$> readFile "examples/doc-classifier-data/data-classes"
let intClasses = [0..length classes - 1]
documents = createDocuments classes dataset
testDocuments = createDocuments classes test
nb = initialize documents
results = map (\(Document text c) -> (c, determine text nb intClasses documents)) testDocuments
let showResults (c, r) = putStrLn (classes !! c ++ " ~ " ++ classes !! r)
mapM_ showResults results
let showAccuracy (c, r) =
print $ genericLength (filter (\(h, j) -> h == j && h == c) results) / genericLength results
mapM_ showAccuracy results
putStrLn $ "Recall: " ++ show (recall results) ++ "%"
putStrLn $ "Precision: " ++ show (precision results) ++ "%"
putStrLn $ "F Measure: " ++ show (fmeasure (precision results) (recall results))
putStrLn $ "Accuracy: " ++ show (accuracy results) ++ "%"