2019-04-09 07:42:30 +00:00
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
2019-04-14 07:49:54 +00:00
|
|
|
from matplotlib import colors, cm
|
2019-04-09 07:42:30 +00:00
|
|
|
import scipy.interpolate as interpolate
|
2019-04-14 07:49:54 +00:00
|
|
|
from scipy import ndimage
|
2019-04-09 07:42:30 +00:00
|
|
|
import math
|
2019-04-22 05:19:31 +00:00
|
|
|
from io import BytesIO
|
|
|
|
import base64
|
2019-04-09 07:42:30 +00:00
|
|
|
|
2019-04-22 07:57:20 +00:00
|
|
|
parameters = {
|
|
|
|
'width': {
|
|
|
|
'default': 900,
|
|
|
|
'type': 'int',
|
|
|
|
},
|
|
|
|
'height': {
|
|
|
|
'default': 450,
|
|
|
|
'type': 'int',
|
|
|
|
},
|
|
|
|
'mountain_ratio': {
|
|
|
|
'default': 0.3,
|
|
|
|
'type': 'float',
|
|
|
|
'min': 0,
|
|
|
|
'max': 1,
|
|
|
|
'step': 0.01
|
|
|
|
},
|
|
|
|
'sharpness': {
|
|
|
|
'default': 0.7,
|
|
|
|
'type': 'float',
|
|
|
|
'min': 0,
|
|
|
|
'max': 1,
|
|
|
|
'step': 0.01
|
|
|
|
},
|
|
|
|
'max_elevation': {
|
|
|
|
'default': 30,
|
|
|
|
'type': 'int',
|
|
|
|
'min': 0,
|
|
|
|
'max': 50,
|
|
|
|
},
|
|
|
|
'ground_noise': {
|
|
|
|
'default': 15,
|
|
|
|
'type': 'int',
|
|
|
|
'min': 0,
|
|
|
|
'max': 50,
|
|
|
|
},
|
|
|
|
'water_proportion': {
|
|
|
|
'default': 0.6,
|
|
|
|
'type': 'float',
|
|
|
|
'min': 0,
|
|
|
|
'max': 0.99,
|
|
|
|
'step': 0.01
|
|
|
|
},
|
2019-04-24 10:30:45 +00:00
|
|
|
'mountain_concentration': {
|
2019-04-22 07:57:20 +00:00
|
|
|
'default': 1,
|
2019-04-24 10:30:45 +00:00
|
|
|
'type': 'float',
|
2019-04-22 07:57:20 +00:00
|
|
|
'min': 0,
|
|
|
|
'max': 5,
|
2019-04-24 10:30:45 +00:00
|
|
|
'step': 0.1
|
2019-04-22 07:57:20 +00:00
|
|
|
},
|
|
|
|
'mountain_sea_distance': {
|
|
|
|
'default': 50,
|
|
|
|
'type': 'int',
|
|
|
|
'min': 0,
|
|
|
|
'max': 200,
|
|
|
|
},
|
|
|
|
'mountain_sea_threshold': {
|
|
|
|
'default': 2,
|
|
|
|
'type': 'int',
|
|
|
|
'min': 0,
|
|
|
|
'max': 5,
|
|
|
|
},
|
|
|
|
'water_level': {
|
|
|
|
'default': 0,
|
|
|
|
'type': 'int',
|
|
|
|
},
|
|
|
|
'mountain_area_elevation': {
|
|
|
|
'default': 0.4,
|
|
|
|
'type': 'float',
|
|
|
|
'min': 0,
|
|
|
|
'max': 1,
|
|
|
|
'step': 0.01
|
|
|
|
},
|
2019-04-24 10:30:45 +00:00
|
|
|
'mountain_area_elevation_points': {
|
2019-04-22 07:57:20 +00:00
|
|
|
'default': 5,
|
|
|
|
'type': 'int',
|
|
|
|
'min': 0,
|
|
|
|
'max': 15,
|
|
|
|
},
|
|
|
|
'mountain_area_elevation_area': {
|
|
|
|
'default': 10,
|
|
|
|
'type': 'int',
|
|
|
|
'min': 0,
|
|
|
|
'max': 25,
|
|
|
|
},
|
|
|
|
'continents': {
|
|
|
|
'default': 5,
|
|
|
|
'type': 'int',
|
|
|
|
},
|
2019-04-24 10:30:45 +00:00
|
|
|
'continent_spacing': {
|
|
|
|
'default': 0.3,
|
|
|
|
'type': 'float',
|
|
|
|
'min': 0,
|
|
|
|
'max': 1,
|
|
|
|
'step': 0.1
|
|
|
|
},
|
2019-04-22 07:57:20 +00:00
|
|
|
'seed': {
|
|
|
|
'default': '',
|
|
|
|
'type': 'int',
|
|
|
|
'description': 'Leave empty for a random seed generated from the current timestamp.'
|
|
|
|
},
|
|
|
|
|
|
|
|
}
|
|
|
|
p = { k: parameters[k]['default'] for k in parameters }
|
2019-04-09 07:42:30 +00:00
|
|
|
|
2019-04-14 07:49:54 +00:00
|
|
|
CONTINENT_MAX_TRIALS = 1e4
|
|
|
|
SEA_COLOR = np.array((53, 179, 220, 255)) / 255
|
2019-04-09 07:42:30 +00:00
|
|
|
|
2019-04-14 07:49:54 +00:00
|
|
|
DIRECTIONS = [(-1, -1), (-1, 0), (-1, 1), (1, 1), (1, 0), (1, -1), (0, -1), (0, 1)]
|
|
|
|
|
|
|
|
def s(x):
|
|
|
|
return -2 * x**3 + 3 * x**2
|
|
|
|
|
2019-04-09 07:42:30 +00:00
|
|
|
def is_ground(value):
|
2019-04-22 07:57:20 +00:00
|
|
|
return value > p['water_level']
|
2019-04-09 07:42:30 +00:00
|
|
|
|
2019-04-24 10:30:45 +00:00
|
|
|
# TODO: should check as a sphere
|
2019-04-14 07:49:54 +00:00
|
|
|
def in_range(p, m, size):
|
|
|
|
x, y = p
|
|
|
|
mx, my = m
|
|
|
|
return ((x - mx)**2 + (y - my)**2) < size
|
|
|
|
|
2019-04-09 07:42:30 +00:00
|
|
|
def max_recursion(fn, max_recursion=0):
|
|
|
|
def f(*args, recursion=0, **kwargs):
|
|
|
|
if recursion > max_recursion:
|
|
|
|
return
|
|
|
|
|
|
|
|
return fn(*args, **kwargs)
|
|
|
|
|
2019-04-14 07:49:54 +00:00
|
|
|
def bound_check(ground, point):
|
|
|
|
x, y = point
|
|
|
|
w, h = ground.shape
|
|
|
|
|
2019-04-24 10:30:45 +00:00
|
|
|
if x < 0:
|
|
|
|
x = w + x
|
|
|
|
elif x >= w:
|
|
|
|
x = x - w
|
|
|
|
|
|
|
|
if y < 0:
|
|
|
|
y = h + y
|
|
|
|
elif y >= h:
|
|
|
|
y = y - h
|
2019-04-14 07:49:54 +00:00
|
|
|
|
|
|
|
return (x, y)
|
|
|
|
|
|
|
|
|
2019-04-09 07:42:30 +00:00
|
|
|
def continent_agent(ground, position, size):
|
|
|
|
if size <= 0: return
|
|
|
|
x, y = position
|
|
|
|
|
|
|
|
w, h = ground.shape
|
|
|
|
|
2019-04-14 07:49:54 +00:00
|
|
|
trials = 0
|
|
|
|
|
2019-04-09 07:42:30 +00:00
|
|
|
while True:
|
2019-04-24 10:30:45 +00:00
|
|
|
# if trials > CONTINENT_MAX_TRIALS:
|
|
|
|
# print('couldnt proceed')
|
2019-04-26 08:44:43 +00:00
|
|
|
if size <= 0 or trials > CONTINENT_MAX_TRIALS: break
|
|
|
|
# if size <= 0: break
|
2019-04-09 07:42:30 +00:00
|
|
|
|
|
|
|
dx = np.random.randint(2) or -1
|
|
|
|
dy = np.random.randint(2) or -1
|
|
|
|
|
2019-04-14 07:49:54 +00:00
|
|
|
r = np.random.randint(3)
|
|
|
|
new_point = bound_check(ground, (x + dx, y + dy))
|
|
|
|
if r == 0:
|
|
|
|
x = new_point[0]
|
|
|
|
elif r == 1:
|
|
|
|
y = new_point[1]
|
|
|
|
else:
|
|
|
|
x, y = new_point
|
|
|
|
|
2019-04-24 10:30:45 +00:00
|
|
|
x, y = bound_check(ground, (x, y))
|
2019-04-09 07:42:30 +00:00
|
|
|
|
2019-04-24 10:30:45 +00:00
|
|
|
if not is_ground(ground[x, y]) and in_range((x, y), position, size**2 * np.pi):
|
2019-04-14 07:49:54 +00:00
|
|
|
trials = 0
|
2019-04-09 07:42:30 +00:00
|
|
|
size -= 1
|
2019-04-22 07:57:20 +00:00
|
|
|
ground[x, y] = np.random.randint(1, p['ground_noise'])
|
2019-04-26 08:44:43 +00:00
|
|
|
else:
|
|
|
|
trials += 1
|
2019-04-14 07:49:54 +00:00
|
|
|
|
|
|
|
def neighbours(ground, position, radius):
|
|
|
|
x, y = position
|
|
|
|
return ground[x-radius:x+radius+1, y-radius:y+radius+1]
|
|
|
|
|
2019-04-22 07:57:20 +00:00
|
|
|
def away_from_sea(ground, position, radius=p['mountain_sea_distance']):
|
2019-04-14 07:49:54 +00:00
|
|
|
ns = neighbours(ground, position, radius).flatten()
|
|
|
|
sea = len([1 for x in ns if not is_ground(x)])
|
|
|
|
|
2019-04-22 07:57:20 +00:00
|
|
|
return sea < p['mountain_sea_threshold']
|
2019-04-14 07:49:54 +00:00
|
|
|
|
2019-04-24 10:30:45 +00:00
|
|
|
def random_elevate_agent(ground, position, height, size=p['mountain_area_elevation_points']):
|
2019-04-22 07:57:20 +00:00
|
|
|
position = position + np.random.random_integers(-p['mountain_area_elevation_area'], p['mountain_area_elevation_area'], size=2)
|
2019-04-14 07:49:54 +00:00
|
|
|
|
|
|
|
for i in range(size):
|
|
|
|
d = DIRECTIONS[np.random.randint(len(DIRECTIONS))]
|
|
|
|
|
2019-04-24 10:30:45 +00:00
|
|
|
change = height * p['mountain_area_elevation']
|
2019-04-14 07:49:54 +00:00
|
|
|
new_index = bound_check(ground, position + np.array(d))
|
|
|
|
|
|
|
|
if is_ground(ground[new_index]):
|
|
|
|
ground[new_index] += change
|
|
|
|
|
|
|
|
|
|
|
|
def mountain_agent(ground, position):
|
|
|
|
if not away_from_sea(ground, position):
|
|
|
|
return
|
|
|
|
|
|
|
|
x, y = position
|
2019-04-22 07:57:20 +00:00
|
|
|
height = np.random.randint(p['max_elevation'])
|
2019-04-14 07:49:54 +00:00
|
|
|
|
|
|
|
ground[x, y] = height
|
|
|
|
|
|
|
|
last_height = height
|
|
|
|
for i in range(1, height):
|
|
|
|
for d in DIRECTIONS:
|
2019-04-24 10:30:45 +00:00
|
|
|
change = np.random.randint(p['mountain_concentration'] + 1)
|
2019-04-14 07:49:54 +00:00
|
|
|
distance = np.array(d)*i
|
|
|
|
new_index = bound_check(ground, position + distance)
|
|
|
|
|
|
|
|
if is_ground(ground[new_index]):
|
|
|
|
ground[new_index] = last_height - change
|
|
|
|
|
2019-04-24 10:30:45 +00:00
|
|
|
last_height = last_height - change
|
|
|
|
if last_height < 0:
|
|
|
|
break
|
2019-04-14 07:49:54 +00:00
|
|
|
|
|
|
|
random_elevate_agent(ground, position, height)
|
|
|
|
|
|
|
|
|
|
|
|
# takes an initial position and a list of (direction, probability) tuples to walk on
|
|
|
|
# def split_agent(ground, position, directions):
|
|
|
|
|
|
|
|
def constant_filter(a):
|
2019-04-22 07:57:20 +00:00
|
|
|
if a[0] > (1 - p['sharpness']):
|
2019-04-14 07:49:54 +00:00
|
|
|
return max(1, a[0])
|
|
|
|
return 0
|
2019-04-09 07:42:30 +00:00
|
|
|
|
2019-04-22 07:57:20 +00:00
|
|
|
def generate_map(**kwargs):
|
|
|
|
plt.clf()
|
|
|
|
|
|
|
|
p.update(kwargs)
|
|
|
|
|
|
|
|
np.random.seed(p['seed'] or None)
|
|
|
|
|
|
|
|
width, height = p['width'], p['height']
|
|
|
|
continents = p['continents']
|
|
|
|
|
2019-04-09 07:42:30 +00:00
|
|
|
ground = np.zeros((width, height))
|
2019-04-22 07:57:20 +00:00
|
|
|
ground_size = width * height * (1 - p['water_proportion'])
|
2019-04-24 10:30:45 +00:00
|
|
|
print(ground_size / ground.size)
|
2019-04-09 07:42:30 +00:00
|
|
|
|
2019-04-14 07:49:54 +00:00
|
|
|
# position = (int(width / 2), int(height / 2))
|
|
|
|
# ground_size = width * height * GROUND_PROPORTION
|
|
|
|
# continent_agent(ground, position, size=ground_size)
|
2019-04-24 10:30:45 +00:00
|
|
|
position = (0, int(height / 2))
|
|
|
|
ym = 1
|
2019-04-09 07:42:30 +00:00
|
|
|
for continent in range(continents):
|
2019-04-24 10:30:45 +00:00
|
|
|
position = (position[0] + np.random.randint(p['continent_spacing'] * width * 0.8, p['continent_spacing'] * width * 1.2),
|
|
|
|
position[1] + ym * np.random.randint(p['continent_spacing'] * height * 0.8, p['continent_spacing'] * height * 1.2))
|
|
|
|
|
2019-04-14 07:49:54 +00:00
|
|
|
print(position)
|
2019-04-24 10:30:45 +00:00
|
|
|
|
|
|
|
ym = ym * -1
|
|
|
|
|
2019-04-26 08:44:43 +00:00
|
|
|
random_size = ground_size / continents
|
2019-04-24 10:30:45 +00:00
|
|
|
continent_agent(ground, position, size=random_size)
|
2019-04-14 07:49:54 +00:00
|
|
|
|
2019-04-22 07:57:20 +00:00
|
|
|
ground = ndimage.gaussian_filter(ground, sigma=(1 - p['sharpness']) * 20)
|
2019-04-14 07:49:54 +00:00
|
|
|
|
2019-04-22 07:57:20 +00:00
|
|
|
for i in range(int(ground_size * p['mountain_ratio'] / p['max_elevation']**2)):
|
2019-04-14 07:49:54 +00:00
|
|
|
position = (np.random.randint(0, width), np.random.randint(0, height))
|
|
|
|
mountain_agent(ground, position)
|
|
|
|
|
|
|
|
norm = colors.Normalize(vmin=1)
|
|
|
|
greys = cm.get_cmap('Greys')
|
|
|
|
greys.set_under(color=SEA_COLOR)
|
|
|
|
|
|
|
|
ground = ndimage.gaussian_filter(ground, sigma=4)
|
|
|
|
ground = ndimage.generic_filter(ground, constant_filter, size=1)
|
2019-04-22 07:57:20 +00:00
|
|
|
print(np.min(ground), np.max(ground), p['max_elevation'])
|
2019-04-14 07:49:54 +00:00
|
|
|
print(np.unique(ground))
|
2019-04-09 07:42:30 +00:00
|
|
|
|
2019-04-24 10:30:45 +00:00
|
|
|
print(np.count_nonzero(ground) / ground.size)
|
|
|
|
|
2019-04-14 07:49:54 +00:00
|
|
|
plt.imshow(ground.T, cmap=greys, norm=norm)
|
2019-04-09 07:42:30 +00:00
|
|
|
|
2019-04-22 05:19:31 +00:00
|
|
|
figfile = BytesIO()
|
|
|
|
plt.savefig(figfile, format='png')
|
|
|
|
figfile.seek(0)
|
|
|
|
|
|
|
|
return figfile
|
2019-04-09 07:42:30 +00:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2019-04-22 07:57:20 +00:00
|
|
|
generate_map()
|
2019-04-22 05:19:31 +00:00
|
|
|
plt.show()
|