Experimental Haskell machine learning library
Go to file
2016-09-10 01:15:38 +04:30
app feat(crossEntropy): crossEntropy cost function 2016-07-24 10:48:04 +04:30
examples chore(README): better readme, chart 2016-09-10 01:15:38 +04:30
profiling fix(naivebayes): fix the algorithm to make it actually work 2016-08-05 23:54:36 +04:30
src feat(notmnist): notmnist example using SGD + learning rate decay 2016-09-10 00:36:15 +04:30
test fix(stack): use stack build and exec instead of manual stack ghc 2016-07-18 16:33:34 +04:30
.gitignore Initial commit 2016-07-17 16:52:16 +04:30
.gitmodules feat(notmnist): notmnist example using SGD + learning rate decay 2016-09-10 00:36:15 +04:30
LICENSE fix(stack): use stack build and exec instead of manual stack ghc 2016-07-18 16:33:34 +04:30
notmnist-0.png feat(notmnist): notmnist example using SGD + learning rate decay 2016-09-10 00:36:15 +04:30
notmnist-1.png feat(notmnist): notmnist example using SGD + learning rate decay 2016-09-10 00:36:15 +04:30
notmnist-2.png feat(notmnist): notmnist example using SGD + learning rate decay 2016-09-10 00:36:15 +04:30
notmnist.png chore(README): better readme, chart 2016-09-10 01:15:38 +04:30
README.md chore(README): better readme, chart 2016-09-10 01:15:38 +04:30
Setup.hs initial commit, still work in progress 2016-07-17 16:53:13 +04:30
sgd.png chore(README): better readme, chart 2016-09-10 01:15:38 +04:30
sibe.cabal feat(notmnist): notmnist example using SGD + learning rate decay 2016-09-10 00:36:15 +04:30
stack.yaml feat(notmnist): notmnist example using SGD + learning rate decay 2016-09-10 00:36:15 +04:30

sibe

A simple Machine Learning library.

notMNIST dataset, cross-entropy loss, learning rate decay and sgd: notMNIST

See examples:

# neural network examples
stack exec example-xor
stack exec example-424
# notMNIST dataset, achieves ~87% accuracy using exponential learning rate decay
stack exec example-notmnist

# Naive Bayes document classifier, using Reuters dataset
# using Porter stemming, stopword elimination and a few custom techniques.
# The dataset is imbalanced which causes the classifier to be biased towards some classes (earn, acq, ...)
# to workaround the imbalanced dataset problem, there is a --top-ten option which classifies only top 10 popular
# classes, with evenly split datasets (100 for each), this increases F Measure significantly, along with ~10% of improved accuracy
# N-Grams don't seem to help us much here (or maybe my implementation is wrong!), using bigrams increases
# accuracy, while decreasing F-Measure slightly.
stack exec example-naivebayes-doc-classifier -- --verbose
stack exec example-naivebayes-doc-classifier -- --verbose --top-ten