chore(README): simple neural network
This commit is contained in:
parent
58851611dc
commit
6cb130b15e
39
README.md
39
README.md
@ -5,8 +5,45 @@ A simple Machine Learning library.
|
||||
notMNIST dataset, cross-entropy loss, learning rate decay and sgd:
|
||||
![notMNIST](https://github.com/mdibaiee/sibe/blob/master/notmnist.png?raw=true)
|
||||
|
||||
See examples:
|
||||
## Simple neural network
|
||||
```haskell
|
||||
let a = (sigmoid, sigmoid') -- activation function
|
||||
-- random network, seed 0, values between -1 and 1,
|
||||
-- two inputs, two nodes in hidden layer and a single output
|
||||
rnetwork = randomNetwork 0 (-1, 1) 2 [(2, a)] (1, a)
|
||||
|
||||
-- inputs and labels
|
||||
inputs = [vector [0, 1], vector [1, 0], vector [1, 1], vector [0, 0]]
|
||||
labels = [vector [1], vector [1], vector [0], vector [0]]
|
||||
|
||||
-- define the session which includes parameters
|
||||
session = def { network = rnetwork
|
||||
, learningRate = 0.5
|
||||
, epochs = 1000
|
||||
, training = zip inputs labels
|
||||
, test = zip inputs labels
|
||||
} :: Session
|
||||
|
||||
initialCost = crossEntropy session
|
||||
|
||||
-- run gradient descent
|
||||
-- you can also use `sgd`, see the notmnist example
|
||||
newsession <- run gd session
|
||||
|
||||
let results = map (`forward` newsession) inputs
|
||||
rounded = map (map round . toList) results
|
||||
|
||||
cost = crossEntropy newsession
|
||||
|
||||
putStrLn $ "- initial cost (cross-entropy): " ++ show initialCost
|
||||
putStrLn $ "- actual result: " ++ show results
|
||||
putStrLn $ "- rounded result: " ++ show rounded
|
||||
putStrLn $ "- cost (cross-entropy): " ++ show cost
|
||||
```
|
||||
|
||||
|
||||
## Examples
|
||||
```bash
|
||||
# neural network examples
|
||||
stack exec example-xor
|
||||
stack exec example-424
|
||||
|
Loading…
Reference in New Issue
Block a user