feat(data): seasonal temp/precip data + distance to water

This commit is contained in:
Mahdi Dibaiee 2019-02-11 14:49:14 +03:30
parent caa1b0443c
commit ef604661ca

89
data.py
View File

@ -14,7 +14,6 @@ ECOREGIONS = os.path.join(GEODATA, 'ecoregions', 'single-parts.shp')
ELEVATION = os.path.join(GEODATA, 'srtm', 'topo30-180.tif')
TEMP = os.path.join(GEODATA, 'air_temp')
PRECIP = os.path.join(GEODATA, 'precipitation')
YEAR = 2014
def read_temp_data(year):
return pd.read_csv(os.path.join(TEMP, 'air_temp.{}'.format(year)), sep='\s+', header=None,
@ -37,54 +36,83 @@ eco = geopandas.read_file(ECOREGIONS)
elevation = rasterio.open(ELEVATION)
elevation_data = elevation.read(1)
temp = read_temp_data(YEAR)
temp = {}
precip = {}
MIN_YEAR = 1900
MAX_YEAR = 2017
for year in range(MIN_YEAR, MAX_YEAR + 1):
temp[year] = read_temp_data(year)
precip[year] = read_precip_data(year)
precip[year]['yearly_avg'] = precip[year].mean(axis=1)
precip = read_precip_data(YEAR)
precip['yearly_avg'] = precip.mean(axis=1)
print('# Elevation')
print('bounds: left={} bottom={} top={} right={}'.format(elevation.bounds.left, elevation.bounds.bottom, elevation.bounds.top, elevation.bounds.right))
print('min: {}, max: {}\n'.format(elevation_data.min(), elevation_data.max()))
world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))[['geometry']].unary_union
boundary = world.boundary
print('# Temperature ({})'.format(YEAR))
print('Yearly average min: {}, max: {}\n'.format(temp.yearly_avg.min(), temp.yearly_avg.max()))
temp_precip_columns = []
print('# Precipitation ({})'.format(YEAR))
print('Yearly average min: {}, max: {}\n'.format(precip.yearly_avg.min(), precip.yearly_avg.max()))
for year in range(MIN_YEAR, MAX_YEAR + 1):
for s in ['winter', 'spring', 'summer', 'autumn']:
temp_precip_columns += ['temp_{}_{}'.format(s, year), 'precip_{}_{}'.format(s, year)]
columns = ['biome_num', 'biome_name', 'elevation', 'temp_yearly_avg', 'precip_yearly_avg']
columns = ['biome_num', 'biome_name', 'elevation', 'distance_to_water'] + temp_precip_columns
indices = ['longitude', 'latitude']
final_data = pd.DataFrame(index=indices, columns=columns)
def get_point_information(longitude, latitude):
start_time = time.time()
item = {}
p = Point(longitude, latitude)
# print('({},{})'.format(longitude, latitude))
ecoregion = eco.loc[lambda c: c.geometry.contains(p)]
print("er%ss" % (time.time() - start_time))
if ecoregion.empty:
return False
start_time = time.time()
item['biome_num'] = ecoregion.BIOME_NUM.iloc[0]
item['biome_name'] = ecoregion.BIOME_NAME.iloc[0]
elev = elevation_data[elevation.index(longitude, latitude)]
start_time = time.time()
t = np.argmin(np.array((temp.longitude - longitude)**2 + (temp.latitude - latitude)**2))
start_time = time.time()
p = np.argmin(np.array((precip.longitude - longitude)**2 + (precip.latitude - latitude)**2))
item['elevation'] = elev
return {
'biome_num': ecoregion.BIOME_NUM.iloc[0],
'biome_name': ecoregion.BIOME_NAME.iloc[0],
'elevation': elev,
'temp_yearly_avg': temp.iloc[t, 2:].yearly_avg,
'precip_yearly_avg': precip.iloc[p, 2:].yearly_avg
}
distance_to_sea = p.distance(boundary)
item['distance_to_water'] = distance_to_sea
t = np.argmin(np.array((temp[MIN_YEAR].longitude - longitude)**2 + (temp[MIN_YEAR].latitude - latitude)**2))
p = np.argmin(np.array((precip[MIN_YEAR].longitude - longitude)**2 + (precip[MIN_YEAR].latitude - latitude)**2))
yearly_temp = {}
yearly_precip = {}
for year in range(MIN_YEAR, MAX_YEAR + 1):
yearly_temp[year] = yt = temp[year].iloc[t, 2:]
yearly_precip[year] = yp = precip[year].iloc[p, 2:]
winter_temp = [yt.january, yt.february] + ([yearly_temp[year - 1].december] if year > MIN_YEAR else [])
winter_precip = [yp.january, yp.february] + ([yearly_precip[year - 1].december] if year > MIN_YEAR else [])
spring_temp = [yt[month] for month in ['march', 'april', 'may']]
spring_precip = [yp[month] for month in ['march', 'april', 'may']]
summer_temp = [yt[month] for month in ['june', 'july', 'august']]
summer_precip = [yp[month] for month in ['june', 'july', 'august']]
autumn_temp = [yt[month] for month in ['september', 'november', 'october']]
autumn_precip = [yp[month] for month in ['september', 'november', 'october']]
item['temp_winter_{}'.format(year)] = np.mean(winter_temp)
item['precip_winter_{}'.format(year)] = np.mean(winter_temp)
item['temp_spring_{}'.format(year)] = np.mean(spring_temp)
item['precip_spring_{}'.format(year)] = np.mean(spring_temp)
item['temp_summer_{}'.format(year)] = np.mean(summer_temp)
item['precip_summer_{}'.format(year)] = np.mean(summer_temp)
item['temp_autumn_{}'.format(year)] = np.mean(autumn_temp)
item['precip_autumn_{}'.format(year)] = np.mean(autumn_temp)
return item
data_indices = []
data_map = {}
for col in columns:
data_map[col] = {}
data_map[col] = {}
i = 0
@ -103,6 +131,7 @@ for longitude in range(-179, 179):
data_map[key][(longitude, latitude)] = value
print('+', end='')
print('')
print("--- Calculations: %s seconds ---" % (time.time() - start_time))
@ -110,7 +139,7 @@ print("--- Calculations: %s seconds ---" % (time.time() - start_time))
start_time = time.time()
df = pd.DataFrame(data_map)
print("--- Generating DataFrame: %s seconds ---" % (time.time() - start_time))
print(df.head())
print(df)
start_time = time.time()
df.to_pickle('data.p')
print("--- Pickling DataFrame: %s seconds ---" % (time.time() - start_time))