feat(map-generator): use biome models for generating the biome layer

This commit is contained in:
Mahdi Dibaiee 2019-05-18 16:17:28 +04:30
parent f79c63abf8
commit d965474974
13 changed files with 204 additions and 34 deletions

View File

@ -2,26 +2,33 @@ import fire
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Circle, Patch
from utils import logger
from utils import logger, to_range
from constants import BIOMES
import pandas as pd
import cartopy.crs as ccrs
def draw(df, path=None):
def draw(df, earth=True, width=23.22, height=13, only_draw=False, path=None):
logger.debug('draw(df, %s)', path)
biomes = {}
biome_numbers = df['biome_num'].unique()
for i, row in df.iterrows():
p = (row.longitude, row.latitude)
if earth:
p = (row.longitude, row.latitude)
else:
p = (to_range(-180, 180, 0, width)(row.longitude), to_range(-90, 90, 0, height)(row.latitude))
if row.biome_num in biomes:
biomes[row.biome_num].append(p)
else:
biomes[row.biome_num] = [p]
ax = plt.axes(projection=ccrs.PlateCarree())
ax.stock_img()
if earth:
ax = plt.axes(projection=ccrs.PlateCarree())
ax.stock_img()
else:
ax = plt.gca()
legend_handles = []
for n in biome_numbers:
@ -34,11 +41,14 @@ def draw(df, path=None):
ax.add_collection(collection)
ax.legend(handles=legend_handles, loc='center left', bbox_to_anchor=(1, 0.5), markerscale=4)
ax.autoscale_view()
figure = plt.gcf()
figure.set_size_inches(23.22, 13)
figure.set_size_inches(width, height)
figure.subplots_adjust(left=0.02, right=0.79)
if only_draw: return
if path:
plt.savefig(path)
else:

View File

@ -9,10 +9,15 @@ from io import BytesIO
import pandas as pd
from shapely.geometry import Point, MultiPoint
from descartes import PolygonPatch
from constants import INPUTS, SEASONS
from draw import draw
from train import A_params
from model import Model
from utils import *
parameters = {
'width': {
'default': 900,
'default': 700,
'type': 'int',
},
'height': {
@ -34,16 +39,22 @@ parameters = {
'step': 0.01
},
'max_elevation': {
'default': 30,
'default': 1e4,
'type': 'int',
'min': 0,
'max': 50,
'max': 1e4,
},
'min_elevation': {
'default': -400,
'type': 'int',
'min': -1000,
'max': 0
},
'ground_noise': {
'default': 15,
'default': 1.1e4,
'type': 'int',
'min': 0,
'max': 50,
'max': 1e5,
},
'water_proportion': {
'default': 0.6,
@ -109,6 +120,16 @@ parameters = {
'default': False,
'type': 'bool'
},
'mean_temperature': {
'default': -4.2,
'type': 'float',
'step': 1,
},
'mean_precipitation': {
'default': 45.24,
'type': 'float',
'step': 1,
},
'seed': {
'default': '',
'type': 'int',
@ -156,6 +177,9 @@ def bound_check(ground, point):
elif y >= h:
y = y - h
if x < 0 or x >= w or y < 0 or y >= h:
return bound_check(ground, (x, y))
return (x, y)
@ -190,7 +214,7 @@ def continent_agent(ground, position, size):
if not is_ground(ground[x, y]) and in_range((x, y), position, size**2 * np.pi):
trials = 0
size -= 1
ground[x, y] = np.random.randint(1, p['ground_noise'])
ground[x, y] = np.random.randint(p['water_level'] + 1, p['ground_noise'])
else:
trials += 1
@ -218,6 +242,7 @@ def random_elevate_agent(ground, position, height, size=p['mountain_area_elevati
def mountain_agent(ground, position):
print('mountain_agent')
if not away_from_sea(ground, position):
return
@ -283,11 +308,11 @@ def generate_map(biomes=False, **kwargs):
ground = ndimage.gaussian_filter(ground, sigma=(1 - p['sharpness']) * 20)
for i in range(int(ground_size * p['mountain_ratio'] / p['max_elevation']**2)):
for i in range(int(ground_size * p['mountain_ratio'] / (p['max_elevation'] / 2))):
position = (np.random.randint(0, width), np.random.randint(0, height))
mountain_agent(ground, position)
norm = colors.Normalize(vmin=1)
norm = colors.Normalize(vmin=p['water_level'] + 1)
greys = cm.get_cmap('Greys')
greys.set_under(color=SEA_COLOR)
@ -311,12 +336,6 @@ def generate_map(biomes=False, **kwargs):
return figfile
def to_range(omin, omax, nmin, nmax):
orange = omax - omin
nrange = nmax - nmin
return lambda x: ((x - omin) * nrange / orange) + nmin
def generate_biomes(ground):
width, height = p['width'], p['height']
@ -325,7 +344,6 @@ def generate_biomes(ground):
width_to_longitude = to_range(0, width, -180, 180)
print('generate_biomes')
INPUTS = ['elevation', 'distance_to_water', 'latitude']
data = {}
for col in ['longitude', 'latitude', 'elevation', 'distance_to_water']:
@ -341,17 +359,24 @@ def generate_biomes(ground):
data['latitude'].append(height_to_latitude(y))
data['elevation'].append(v)
print(len(points))
print('buffering points')
points = MultiPoint(points)
boundary = points.buffer(1e-0).boundary
boundary = points.buffer(1).boundary
for x, y in np.ndindex(ground.shape):
if ground[x,y] > p['water_level']:
# print(x,y, Point(x,y).distance(boundary))
data['distance_to_water'].append(Point(x, y).distance(boundary))
df = pd.DataFrame(data)
print(df)
print(df['elevation'].min(), df['elevation'].max())
print(df['distance_to_water'].min(), df['distance_to_water'].max())
print(df['latitude'].min(), df['latitude'].max())
print('running prediction models')
print(p['mean_precipitation'], p['mean_temperature'])
result = predict_end_to_end(df, boundary)
# fig = plt.figure()
# ax = fig.add_subplot(111)
@ -365,7 +390,118 @@ def generate_biomes(ground):
# plt.show()
df = pd.read_pickle('data.p')
print(df['elevation'].min(), df['elevation'].max())
print(df['distance_to_water'].min(), df['distance_to_water'].max())
print(df['latitude'].min(), df['latitude'].max())
def predict_end_to_end(input_df, boundary, checkpoint_temp='checkpoints/temp.h5', checkpoint_precip='checkpoints/precip.h5', checkpoint_biomes='checkpoints/b.h5', year=2000):
batch_size = A_params['batch_size']['grid_search'][0]
layers = A_params['layers']['grid_search'][0]
optimizer = A_params['optimizer']['grid_search'][0](A_params['lr']['grid_search'][0])
Temp = Model('temp', epochs=1)
Temp.prepare_for_use(
batch_size=batch_size,
layers=layers,
dataset_fn=dataframe_to_dataset_temp,
optimizer=optimizer,
out_activation=None,
loss='mse',
metrics=['mae']
)
Temp.restore(checkpoint_temp)
Precip = Model('precip', epochs=1)
Precip.prepare_for_use(
batch_size=batch_size,
layers=layers,
dataset_fn=dataframe_to_dataset_temp,
optimizer=optimizer,
out_activation=None,
loss='mse',
metrics=['mae']
)
Precip.restore(checkpoint_precip)
Biomes = Model('b', epochs=1)
Biomes.prepare_for_use()
Biomes.restore(checkpoint_biomes)
inputs = input_df[INPUTS]
inputs.loc[:, 'mean_temp'] = p['mean_temperature']
inputs_copy = inputs.copy()
inputs_copy.loc[:, 'mean_temp'] = mean_temperature_over_years(df, size=inputs.shape[0])
inputs = inputs.to_numpy()
inputs = normalize_ndarray(inputs, inputs_copy)
print(inputs)
out_columns = ['temp_{}_{}'.format(season, year) for season in SEASONS]
out = Temp.predict(inputs)
temp_output = pd.DataFrame(data=denormalize(out, df[out_columns].to_numpy()), columns=out_columns)
inputs = input_df[INPUTS]
inputs.loc[:, 'mean_precip'] = p['mean_precipitation']
inputs_copy = inputs.copy()
inputs_copy.loc[:, 'mean_precip'] = mean_precipitation_over_years(df, size=inputs.shape[0])
inputs = inputs.to_numpy()
inputs = normalize_ndarray(inputs, inputs_copy)
print(inputs)
out_columns = ['precip_{}_{}'.format(season, year) for season in SEASONS]
out = Precip.predict(inputs)
precip_output = pd.DataFrame(data=denormalize(out, df[out_columns].to_numpy()), columns=out_columns)
inputs = list(INPUTS)
frame = input_df[inputs + ['longitude']]
for season in SEASONS:
tc = 'temp_{}_{}'.format(season, year)
pc = 'precip_{}_{}'.format(season, year)
frame.loc[:, tc] = temp_output[tc]
frame.loc[:, pc] = precip_output[pc]
frame.loc[:, 'latitude'] = input_df['latitude']
frame_cp = frame.copy()
columns = ['latitude', 'longitude', 'biome_num']
new_data = pd.DataFrame(columns=columns)
nframe = pd.DataFrame(columns=frame.columns, data=normalize_ndarray(frame.to_numpy()))
for season in SEASONS:
inputs += [
'temp_{}_{}'.format(season, year),
'precip_{}_{}'.format(season, year)
]
for i, (chunk, chunk_original) in enumerate(zip(chunker(nframe, Biomes.batch_size), chunker(frame_cp, Biomes.batch_size))):
if chunk.shape[0] < Biomes.batch_size:
continue
input_data = chunk.loc[:, inputs].values
out = Biomes.predict_class(input_data)
f = pd.DataFrame({
'longitude': chunk_original.loc[:, 'longitude'],
'latitude': chunk_original.loc[:, 'latitude'],
'biome_num': out
}, columns=columns)
new_data = new_data.append(f)
#print(new_data)
draw(new_data, earth=False, only_draw=True, width=p['width'], height=p['height'])
# TODO: reduce opacity of biome layer
if __name__ == "__main__":
generate_map()
# p['width'] = 50
# p['height'] = 50
p['water_proportion'] = 0.9
p['continents'] = 3
p['seed'] = 1
generate_map(True)
# print(normalize_ndarray(np.array([[ 5.59359803,0.99879546,-90., 45.24], [ 5.54976747, 0.99879546,-86.4, 45.24 ]])))
plt.show()

View File

@ -147,6 +147,7 @@ def predict_end_to_end(Temp, Precip, Biomes, year=2000):
all_temps = ['temp_{}_{}'.format(season, year) for season in SEASONS]
inputs.loc[:, 'mean_temp'] = np.mean(df[all_temps].values)
print(inputs['mean_temp'])
inputs = inputs.to_numpy()
inputs = normalize_ndarray(inputs)
@ -158,6 +159,7 @@ def predict_end_to_end(Temp, Precip, Biomes, year=2000):
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
inputs.loc[:, 'mean_precip'] = np.mean(df[all_precips].values)
print(inputs['mean_precip'])
inputs = inputs.to_numpy()
inputs = normalize_ndarray(inputs)
@ -168,12 +170,6 @@ def predict_end_to_end(Temp, Precip, Biomes, year=2000):
inputs = list(INPUTS)
for season in SEASONS:
inputs += [
'temp_{}_{}'.format(season, year),
'precip_{}_{}'.format(season, year)
]
frame = df[inputs + ['longitude']]
for season in SEASONS:
@ -190,6 +186,12 @@ def predict_end_to_end(Temp, Precip, Biomes, year=2000):
new_data = pd.DataFrame(columns=columns)
nframe = pd.DataFrame(columns=frame.columns, data=normalize_ndarray(frame.to_numpy()))
for season in SEASONS:
inputs += [
'temp_{}_{}'.format(season, year),
'precip_{}_{}'.format(season, year)
]
for i, (chunk, chunk_original) in enumerate(zip(chunker(nframe, Biomes.batch_size), chunker(frame_cp, Biomes.batch_size))):
if chunk.shape[0] < Biomes.batch_size:
continue

View File

@ -6,15 +6,17 @@ from sklearn.utils import class_weight
from constants import *
import logging
import os
from math import ceil
logger = logging.getLogger('main')
logger.setLevel(os.environ.get('LOG_LEVEL', 'INFO'))
EPSILON = 1e-5
def normalize(v, o=None):
if o is None:
o = v
return (v - np.mean(o)) / np.std(o)
return (v - np.mean(o)) / max(EPSILON, np.std(o))
def denormalize(v, o=None):
if o is None:
@ -132,8 +134,28 @@ def dataframe_to_dataset_precip(df):
logger.debug('dataset size: rows=%d, input_columns=%d, num_classes=%d', int(tf_inputs.shape[0]), input_columns, num_classes)
return int(tf_inputs.shape[0]), input_columns, num_classes, None, tf.data.Dataset.from_tensor_slices((tf_inputs, tf_output))
def mean_temperature_over_years(df, size=MAX_YEAR - MIN_YEAR):
means = []
for year in range(MIN_YEAR, MAX_YEAR + 1):
all_temps = ['temp_{}_{}'.format(season, year) for season in SEASONS]
means.append(np.mean(df[all_temps].values))
return (means * ceil(size / len(means)))[0:size]
def mean_precipitation_over_years(df, size=MAX_YEAR - MIN_YEAR):
means = []
for year in range(MIN_YEAR, MAX_YEAR + 1):
all_precips = ['precip_{}_{}'.format(season, year) for season in SEASONS]
means.append(np.mean(df[all_precips].values))
return (means * ceil(size / len(means)))[0:size]
flatten = lambda l: [item for sublist in l for item in sublist]
def chunker(seq, size):
return (seq[pos:pos + size] for pos in range(0, len(seq), size))
def to_range(omin, omax, nmin, nmax):
orange = omax - omin
nrange = nmax - nmin
return lambda x: ((x - omin) * nrange / orange) + nmin

View File

@ -1,5 +1,5 @@
from flask import Flask, render_template, make_response, send_file, request
from index import generate_map, parameters
from map_generator import generate_map, parameters
app = Flask(__name__)