fix: use correct order for prediction
This commit is contained in:
parent
3dcafddb8c
commit
8477c02aae
Binary file not shown.
2
draw.py
2
draw.py
@ -39,7 +39,7 @@ def draw(df, path=None):
|
|||||||
}
|
}
|
||||||
|
|
||||||
for n in biome_numbers:
|
for n in biome_numbers:
|
||||||
biomes[n] = MultiPoint(biomes[n]).buffer(1)
|
biomes[n] = MultiPoint(biomes[n]).buffer(0.5)
|
||||||
# print(biomes[n])
|
# print(biomes[n])
|
||||||
# legend = biome_names[n]
|
# legend = biome_names[n]
|
||||||
if not hasattr(biomes[n], '__iter__'):
|
if not hasattr(biomes[n], '__iter__'):
|
||||||
|
24
nn.py
24
nn.py
@ -55,18 +55,22 @@ class Model():
|
|||||||
params = {
|
params = {
|
||||||
'kernel_initializer': 'lecun_uniform',
|
'kernel_initializer': 'lecun_uniform',
|
||||||
'bias_initializer': 'zeros',
|
'bias_initializer': 'zeros',
|
||||||
|
# 'kernel_regularizer': keras.regularizers.l2(l=0.01)
|
||||||
}
|
}
|
||||||
# dropout = keras.layersDropout(0.2, input_shape=[self.features])
|
dropout = [keras.layers.Dropout(0.1, input_shape=[self.features])]
|
||||||
self.model = keras.Sequential([
|
self.model = keras.Sequential(dropout + [
|
||||||
keras.layers.Dense(layers[0], activation=tf.nn.elu, input_shape=[self.features], **params)
|
keras.layers.Dense(layers[0], activation=tf.nn.elu, **params)
|
||||||
] + [
|
] + [
|
||||||
keras.layers.Dense(n, activation=tf.nn.elu, **params) for n in layers[1:]
|
keras.layers.Dense(n, activation=tf.nn.elu, **params) for n in layers[1:]
|
||||||
] + [
|
] + [
|
||||||
keras.layers.Dense(self.output_size, activation=out_activation, **params)
|
keras.layers.Dense(self.output_size, activation=out_activation, **params)
|
||||||
])
|
])
|
||||||
|
|
||||||
def compile(self, loss='mse', metrics=['accuracy'], optimizer=tf.train.AdamOptimizer):
|
def compile(self, loss='mse', metrics=['accuracy'], optimizer=tf.train.AdamOptimizer, load_weights=True):
|
||||||
self.model.load_weights(self.path)
|
if load_weights:
|
||||||
|
self.model.load_weights(self.path)
|
||||||
|
print('loaded weights')
|
||||||
|
|
||||||
optimizer = optimizer(self.learning_rate)
|
optimizer = optimizer(self.learning_rate)
|
||||||
|
|
||||||
self.model.compile(loss=loss,
|
self.model.compile(loss=loss,
|
||||||
@ -81,12 +85,16 @@ class Model():
|
|||||||
verbose=1
|
verbose=1
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def evaluate_print(self):
|
||||||
|
loss, accuracy = self.evaluate()
|
||||||
|
print('Test evaluation: loss: {}, accuracy: {}'.format(loss, accuracy))
|
||||||
|
|
||||||
def train(self):
|
def train(self):
|
||||||
self.model.summary()
|
self.model.summary()
|
||||||
|
|
||||||
checkpoint = keras.callbacks.ModelCheckpoint(self.path, monitor='acc', verbose=1, mode='max')
|
checkpoint = keras.callbacks.ModelCheckpoint(self.path, monitor='acc', verbose=1, mode='max')
|
||||||
tensorboard = keras.callbacks.TensorBoard(log_dir='./logs', update_freq='epoch')
|
tensorboard = keras.callbacks.TensorBoard(log_dir='./logs', update_freq='epoch')
|
||||||
# map_callback = keras.callbacks.LambdaCallback(on_epoch_end=self.map_callback)
|
map_callback = keras.callbacks.LambdaCallback(on_epoch_end=self.evaluate_print)
|
||||||
|
|
||||||
self.model.fit(
|
self.model.fit(
|
||||||
self.training,
|
self.training,
|
||||||
@ -101,11 +109,11 @@ class Model():
|
|||||||
return np.argmax(self.model.predict(a), axis=1)
|
return np.argmax(self.model.predict(a), axis=1)
|
||||||
|
|
||||||
A = Model('a', epochs=2)
|
A = Model('a', epochs=2)
|
||||||
B = Model('b', learning_rate=0.001, epochs=450)
|
B = Model('b', learning_rate=0.001, epochs=20)
|
||||||
|
|
||||||
def compile_b():
|
def compile_b():
|
||||||
B.prepare_dataset(df, dataframe_to_dataset_biomes)
|
B.prepare_dataset(df, dataframe_to_dataset_biomes)
|
||||||
B.create_model([32], tf.nn.softmax)
|
B.create_model([32, 32], tf.nn.softmax)
|
||||||
B.compile(loss='sparse_categorical_crossentropy')
|
B.compile(loss='sparse_categorical_crossentropy')
|
||||||
|
|
||||||
def compile_a():
|
def compile_a():
|
||||||
|
@ -17,7 +17,7 @@ compile_b()
|
|||||||
for change in range(0, 1):
|
for change in range(0, 1):
|
||||||
print('TEMPERATURE MODIFICATION OF {}'.format(change))
|
print('TEMPERATURE MODIFICATION OF {}'.format(change))
|
||||||
|
|
||||||
inputs = ['latitude', 'longitude', 'elevation', 'distance_to_water']
|
inputs = ['elevation', 'distance_to_water', 'latitude']
|
||||||
|
|
||||||
for season in SEASONS:
|
for season in SEASONS:
|
||||||
inputs += [
|
inputs += [
|
||||||
@ -25,8 +25,10 @@ for change in range(0, 1):
|
|||||||
'precip_{}_{}'.format(season, year)
|
'precip_{}_{}'.format(season, year)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
print(inputs)
|
||||||
|
|
||||||
# print(inputs)
|
# print(inputs)
|
||||||
frame = df[inputs]
|
frame = df[inputs + ['longitude']]
|
||||||
# print(frame.head())
|
# print(frame.head())
|
||||||
|
|
||||||
for season in SEASONS:
|
for season in SEASONS:
|
||||||
@ -38,7 +40,7 @@ for change in range(0, 1):
|
|||||||
for i, chunk in enumerate(chunker(frame, B.batch_size)):
|
for i, chunk in enumerate(chunker(frame, B.batch_size)):
|
||||||
if chunk.shape[0] < B.batch_size:
|
if chunk.shape[0] < B.batch_size:
|
||||||
continue
|
continue
|
||||||
input_data = normalize_ndarray(chunk.loc[:, chunk.columns != 'longitude'].values)
|
input_data = normalize_ndarray(chunk.loc[:, inputs].values)
|
||||||
out = B.predict(input_data)
|
out = B.predict(input_data)
|
||||||
|
|
||||||
f = pd.DataFrame({
|
f = pd.DataFrame({
|
||||||
@ -48,5 +50,4 @@ for change in range(0, 1):
|
|||||||
}, columns=columns)
|
}, columns=columns)
|
||||||
new_data = new_data.append(f)
|
new_data = new_data.append(f)
|
||||||
|
|
||||||
print(new_data)
|
|
||||||
draw(new_data)
|
draw(new_data)
|
||||||
|
Loading…
Reference in New Issue
Block a user