#include #include #define GLFW_INCLUDE_VULKAN #include #include #include #include #include #include #include #include #include #include #include const std::vector validationLayers = { "VK_LAYER_KHRONOS_validation" }; #ifdef NDEBUG const bool enableValidationLayers = false; #else const bool enableValidationLayers = true; #endif static std::vector readFile(const std::string& filename) { std::ifstream file(filename, std::ios::ate | std::ios::binary); if (!file.is_open()) { throw std::runtime_error("failed to open file!"); } size_t fileSize = (size_t) file.tellg(); std::vector buffer(fileSize); file.seekg(0); file.read(buffer.data(), fileSize); file.close(); return buffer; } class HelloTriangleApplication { public: void run() { initWindow(); initVulkan(); mainLoop(); cleanup(); } private: GLFWwindow* window; VkInstance instance; VkPhysicalDevice physicalDevice = VK_NULL_HANDLE; VkDevice device; VkQueue graphicsQueue; VkQueue presentQueue; VkSurfaceKHR surface; VkSwapchainKHR swapChain; VkFormat swapChainImageFormat; VkExtent2D swapChainExtent; std::vector swapChainImages; std::vector swapChainImageViews; const uint32_t WIDTH = 800; const uint32_t HEIGHT = 600; VkRenderPass renderPass; VkPipelineLayout pipelineLayout; VkPipeline graphicsPipeline; std::vector dynamicStates = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; void initWindow() { glfwInit(); glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE); window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr); } void initVulkan() { createInstance(); createSurface(); pickPhysicalDevice(); createLogicalDevice(); createSwapChain(); createImageViews(); createRenderPass(); createGraphicsPipeline(); } void createRenderPass() { VkAttachmentDescription colorAttachment{}; colorAttachment.format = swapChainImageFormat; colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT; colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference colorAttachmentRef{}; colorAttachmentRef.attachment = 0; colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass{}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorAttachmentRef; VkRenderPassCreateInfo renderPassInfo{}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.attachmentCount = 1; renderPassInfo.pAttachments = &colorAttachment; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; VkResult result = vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass); if (result != VK_SUCCESS) { std::cout << "error creating render pass: " << result << std::endl; throw std::runtime_error("failed to create render pass!"); } } void createGraphicsPipeline() { auto vertShaderCode = readFile("shaders/vert.spv"); auto fragShaderCode = readFile("shaders/frag.spv"); VkShaderModule vertShaderModule = createShaderModule(vertShaderCode); VkShaderModule fragShaderModule = createShaderModule(fragShaderCode); VkPipelineShaderStageCreateInfo vertShaderStageInfo{}; vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; vertShaderStageInfo.module = vertShaderModule; vertShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo fragShaderStageInfo{}; fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; fragShaderStageInfo.module = fragShaderModule; fragShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo}; VkPipelineVertexInputStateCreateInfo vertexInputInfo{}; vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputInfo.vertexBindingDescriptionCount = 0; vertexInputInfo.pVertexBindingDescriptions = nullptr; // Optional vertexInputInfo.vertexAttributeDescriptionCount = 0; vertexInputInfo.pVertexAttributeDescriptions = nullptr; // Optional VkPipelineDynamicStateCreateInfo dynamicState{}; dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicState.dynamicStateCount = static_cast(dynamicStates.size()); dynamicState.pDynamicStates = dynamicStates.data(); VkPipelineInputAssemblyStateCreateInfo inputAssembly{}; inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; inputAssembly.primitiveRestartEnable = VK_FALSE; VkViewport viewport{}; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = (float) swapChainExtent.width; viewport.height = (float) swapChainExtent.height; viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; VkRect2D scissor{}; scissor.offset = {0, 0}; scissor.extent = swapChainExtent; VkPipelineViewportStateCreateInfo viewportState{}; viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportState.viewportCount = 1; viewportState.pViewports = &viewport; viewportState.scissorCount = 1; viewportState.pScissors = &scissor; VkPipelineRasterizationStateCreateInfo rasterizer{}; rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterizer.depthClampEnable = VK_FALSE; rasterizer.rasterizerDiscardEnable = VK_FALSE; rasterizer.polygonMode = VK_POLYGON_MODE_FILL; rasterizer.lineWidth = 1.0f; rasterizer.cullMode = VK_CULL_MODE_BACK_BIT; rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE; rasterizer.depthBiasEnable = VK_FALSE; rasterizer.depthBiasConstantFactor = 0.0f; // Optional rasterizer.depthBiasClamp = 0.0f; // Optional rasterizer.depthBiasSlopeFactor = 0.0f; // Optional VkPipelineMultisampleStateCreateInfo multisampling{}; multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampling.sampleShadingEnable = VK_FALSE; multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; multisampling.minSampleShading = 1.0f; // Optional multisampling.pSampleMask = nullptr; // Optional multisampling.alphaToCoverageEnable = VK_FALSE; // Optional multisampling.alphaToOneEnable = VK_FALSE; // Optional VkPipelineColorBlendAttachmentState colorBlendAttachment{}; colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; colorBlendAttachment.blendEnable = VK_FALSE; colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional VkPipelineColorBlendStateCreateInfo colorBlending{}; colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlending.logicOpEnable = VK_FALSE; colorBlending.logicOp = VK_LOGIC_OP_COPY; // Optional colorBlending.attachmentCount = 1; colorBlending.pAttachments = &colorBlendAttachment; colorBlending.blendConstants[0] = 0.0f; // Optional colorBlending.blendConstants[1] = 0.0f; // Optional colorBlending.blendConstants[2] = 0.0f; // Optional colorBlending.blendConstants[3] = 0.0f; // Optional VkPipelineLayoutCreateInfo pipelineLayoutInfo{}; pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutInfo.setLayoutCount = 0; // Optional pipelineLayoutInfo.pSetLayouts = nullptr; // Optional pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional pipelineLayoutInfo.pPushConstantRanges = nullptr; // Optional if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) { throw std::runtime_error("failed to create pipeline layout!"); } VkGraphicsPipelineCreateInfo pipelineInfo{}; pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineInfo.stageCount = 2; pipelineInfo.pStages = shaderStages; pipelineInfo.pVertexInputState = &vertexInputInfo; pipelineInfo.pInputAssemblyState = &inputAssembly; pipelineInfo.pViewportState = &viewportState; pipelineInfo.pRasterizationState = &rasterizer; pipelineInfo.pMultisampleState = &multisampling; pipelineInfo.pDepthStencilState = nullptr; // Optional pipelineInfo.pColorBlendState = &colorBlending; pipelineInfo.pDynamicState = &dynamicState; pipelineInfo.layout = pipelineLayout; pipelineInfo.renderPass = renderPass; pipelineInfo.subpass = 0; pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional pipelineInfo.basePipelineIndex = -1; // Optional if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) { throw std::runtime_error("failed to create graphics pipeline!"); } vkDestroyShaderModule(device, fragShaderModule, nullptr); vkDestroyShaderModule(device, vertShaderModule, nullptr); } VkShaderModule createShaderModule(const std::vector& code) { VkShaderModuleCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; createInfo.codeSize = code.size(); createInfo.pCode = reinterpret_cast(code.data()); VkShaderModule shaderModule; VkResult result = vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule); if (result != VK_SUCCESS) { std::cout << "create shader module error: " << result << std::endl; throw std::runtime_error("failed to create shader module!"); } return shaderModule; } void createSurface() { VkResult result = glfwCreateWindowSurface(instance, window, nullptr, &surface); if (result != VK_SUCCESS) { std::cout << "create surface error: " << result << std::endl; throw std::runtime_error("failed to create window surface"); } } void createSwapChain() { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice); VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats); swapChainImageFormat = surfaceFormat.format; VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes); VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities); swapChainExtent = extent; uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1; if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) { imageCount = swapChainSupport.capabilities.maxImageCount; } VkSwapchainCreateInfoKHR createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; createInfo.surface = surface; createInfo.minImageCount = imageCount; createInfo.imageFormat = surfaceFormat.format; createInfo.imageColorSpace = surfaceFormat.colorSpace; createInfo.imageExtent = extent; createInfo.imageArrayLayers = 1; createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; QueueFamilyIndices indices = findQueueFamilies(physicalDevice); uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()}; if (indices.graphicsFamily != indices.presentFamily) { createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; createInfo.queueFamilyIndexCount = 2; createInfo.pQueueFamilyIndices = queueFamilyIndices; } else { createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; createInfo.queueFamilyIndexCount = 0; // Optional createInfo.pQueueFamilyIndices = nullptr; // Optional } createInfo.preTransform = swapChainSupport.capabilities.currentTransform; createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; createInfo.presentMode = presentMode; createInfo.clipped = VK_TRUE; createInfo.oldSwapchain = VK_NULL_HANDLE; VkResult result = vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain); if (result != VK_SUCCESS) { std::cout << "create swap chain error: " << result << std::endl; throw std::runtime_error("failed to create swap chain!"); } vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr); swapChainImages.resize(imageCount); vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data()); } void createImageViews() { swapChainImageViews.resize(swapChainImages.size()); for (size_t i = 0; i < swapChainImages.size(); i++) { VkImageViewCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; createInfo.image = swapChainImages[i]; createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; createInfo.format = swapChainImageFormat; createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; createInfo.subresourceRange.baseMipLevel = 0; createInfo.subresourceRange.levelCount = 1; createInfo.subresourceRange.baseArrayLayer = 0; createInfo.subresourceRange.layerCount = 1; if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) { throw std::runtime_error("failed to create image views!"); } } } VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector& availableFormats) { for (const auto& format : availableFormats) { if (format.format == VK_FORMAT_B8G8R8A8_SRGB && format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { return format; } } return availableFormats[0]; } VkPresentModeKHR chooseSwapPresentMode(const std::vector& availableModes) { for (const auto& mode : availableModes) { if (mode == VK_PRESENT_MODE_MAILBOX_KHR) { return mode; } } return VK_PRESENT_MODE_FIFO_KHR; } VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) { if (capabilities.currentExtent.width != std::numeric_limits::max()) { return capabilities.currentExtent; } else { int width, height; glfwGetFramebufferSize(window, &width, &height); VkExtent2D actualExtent = { static_cast(width), static_cast(height) }; actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width); actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height); return actualExtent; } } void createLogicalDevice() { QueueFamilyIndices indices = findQueueFamilies(physicalDevice); std::vector queueCreateInfos; std::set uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()}; float queuePriority = 1.0f; for (uint32_t queueFamily : uniqueQueueFamilies) { VkDeviceQueueCreateInfo queueCreateInfo{}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = queueFamily; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriority; queueCreateInfos.push_back(queueCreateInfo); } VkPhysicalDeviceFeatures deviceFeatures{}; VkDeviceCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.pQueueCreateInfos = queueCreateInfos.data(); createInfo.queueCreateInfoCount = static_cast(queueCreateInfos.size()); createInfo.pEnabledFeatures = &deviceFeatures; createInfo.enabledExtensionCount = static_cast(requiredDeviceExtensions.size() + 1); std::vector extensions(requiredDeviceExtensions.begin(), requiredDeviceExtensions.end()); extensions.push_back(VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME); createInfo.ppEnabledExtensionNames = extensions.data(); if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); } else { createInfo.enabledLayerCount = 0; } VkResult result = vkCreateDevice(physicalDevice, &createInfo, nullptr, &device); if (result != VK_SUCCESS) { std::cout << "error: " << result << std::endl; throw std::runtime_error("failed to create logical device"); } vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue); } void pickPhysicalDevice() { uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if (deviceCount == 0) { throw std::runtime_error("failed to find GPUs with Vulkan support!"); } std::vector devices(deviceCount); vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); for (const auto& device : devices) { if (isDeviceSuitable(device)) { physicalDevice = device; break; } } if (physicalDevice == VK_NULL_HANDLE) { throw std::runtime_error("could not find a suitable GPU"); } } const std::vector requiredDeviceExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; bool isDeviceSuitable(VkPhysicalDevice device) { /*VkPhysicalDeviceProperties props; vkGetPhysicalDeviceProperties(device, &props); VkPhysicalDeviceFeatures features; vkGetPhysicalDeviceFeatures(device, &features); return props.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU && features.geometryShader;*/ bool extensionsSupported = deviceHasRequiredExtensions(device); bool swapChainAdequate = false; if (extensionsSupported) { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device); swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty(); } QueueFamilyIndices indices = findQueueFamilies(device); return indices.isComplete() && extensionsSupported && swapChainAdequate; } bool deviceHasRequiredExtensions(VkPhysicalDevice device) { uint32_t extensionCount; vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr); std::vector availableExtensions(extensionCount); vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data()); std::set requiredExtensions(requiredDeviceExtensions.begin(), requiredDeviceExtensions.end()); for (const auto& extension : availableExtensions) { requiredExtensions.erase(extension.extensionName); } return requiredExtensions.empty(); } struct QueueFamilyIndices { std::optional graphicsFamily; std::optional presentFamily; bool isComplete() { return graphicsFamily.has_value() && presentFamily.has_value(); } }; QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) { QueueFamilyIndices indices; uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data()); int i = 0; for (const auto& queueFamily : queueFamilies) { if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) { indices.graphicsFamily = i; } VkBool32 presentSupport = false; vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport); if (presentSupport) { indices.presentFamily = i; } if (indices.isComplete()) { break; } i++; } return indices; } struct SwapChainSupportDetails { VkSurfaceCapabilitiesKHR capabilities; std::vector formats; std::vector presentModes; }; SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) { SwapChainSupportDetails details; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities); uint32_t formatCount; vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr); if (formatCount != 0) { details.formats.resize(formatCount); vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data()); } uint32_t presentModeCount; vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr); if (presentModeCount != 0) { details.presentModes.resize(presentModeCount); vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data()); } return details; } bool checkValidationLayerSupport() { uint32_t layerCount; vkEnumerateInstanceLayerProperties(&layerCount, nullptr); std::vector availableLayers(layerCount); vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data()); for (const char* layerName : validationLayers) { bool layerFound = false; for (const auto& layerProperties : availableLayers) { if (strcmp(layerName, layerProperties.layerName) == 0) { layerFound = true; break; } } if (!layerFound) { return false; } } return true; } void createInstance() { VkApplicationInfo appInfo{}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "Hello Triangle"; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "No Engine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = VK_API_VERSION_1_0; VkInstanceCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; createInfo.pApplicationInfo = &appInfo; std::vector requiredExtensions; uint32_t glfwExtensionCount = 0; const char** glfwExtensions; // Enable glfw extensions glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); for (uint32_t i = 0; i < glfwExtensionCount; i++) { requiredExtensions.emplace_back(glfwExtensions[i]); } // Enable Portability Enumeration extension (required for macOS) requiredExtensions.emplace_back(VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME); createInfo.flags |= VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR; createInfo.enabledExtensionCount = (uint32_t) requiredExtensions.size(); createInfo.ppEnabledExtensionNames = requiredExtensions.data(); // Check validation layers if (enableValidationLayers) { if (!checkValidationLayerSupport()) { throw std::runtime_error("validation layers requested, but not available!"); } createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); } else { createInfo.enabledLayerCount = 0; } std::cout << "Validation layers: OK" << std::endl; VkResult result = vkCreateInstance(&createInfo, nullptr, &instance); if (result != VK_SUCCESS) { std::cout << "error creating instance: " << result << std::endl; throw std::runtime_error("failed to create instance!"); } std::cout << "Created instance" << std::endl; // Check for available extensions uint32_t extensionCount = 0; vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr); std::vector extensions(extensionCount); vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensions.data()); std::cout << "available extensions:" << std::endl; for (const auto& extension : extensions) { std::cout << '\t' << extension.extensionName; for (const char* required : requiredExtensions) { if (strcmp(required, extension.extensionName) == 0) { std::cout << " *"; } } std::cout << std::endl; } } void mainLoop() { while (!glfwWindowShouldClose(window)) { glfwPollEvents(); } } void cleanup() { vkDestroyPipeline(device, graphicsPipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyRenderPass(device, renderPass, nullptr); for (auto imageView : swapChainImageViews) { vkDestroyImageView(device, imageView, nullptr); } vkDestroySwapchainKHR(device, swapChain, nullptr); vkDestroyDevice(device, nullptr); vkDestroySurfaceKHR(instance, surface, nullptr); vkDestroyInstance(instance, nullptr); glfwDestroyWindow(window); glfwTerminate(); } }; int main() { HelloTriangleApplication app; try { app.run(); } catch (const std::exception& e) { std::cerr << e.what() << std::endl; return EXIT_FAILURE; } return EXIT_SUCCESS; }