feat(TOC): Table of Contents

post(typoclassopedia): alternative formulations for Applicative
This commit is contained in:
Mahdi Dibaiee 2017-10-06 18:41:43 +03:30
parent c4d343b3fd
commit ae6b5b2be7
7 changed files with 399 additions and 3 deletions

Binary file not shown.

View File

@ -32,3 +32,6 @@ collections:
output: true output: true
permalink: /travel/:path/ permalink: /travel/:path/
path: /travel path: /travel
contentsLabel: "Table of Contents"
showToggleButton: true

View File

@ -10,7 +10,11 @@
<div class="page-content"> <div class="page-content">
<div class="wrapper"> <div class="wrapper">
<h1 class="page-heading"></h1> <h1 class="page-heading"></h1>
{{ content }} {% if page.toc %}
{{ content | toc_generate }}
{% else %}
{{ content }}
{% endif %}
</div> </div>
</div> </div>

132
_plugins/tocGenerator.rb Normal file
View File

@ -0,0 +1,132 @@
require 'nokogiri'
module Jekyll
module TOCGenerator
TOGGLE_HTML = '<h2>%1</h2>'
TOC_CONTAINER_HTML = '<div id="toc-container"><table class="toc" id="toc"><tbody><tr><td>%1%2<ul>%3</ul></td></tr></tbody></table></div>'
HIDE_HTML = '<input type="checkbox" id="toctogglelink" href="#" checked></input><span></span>'
def toc_generate(html)
# No Toc can be specified on every single page
# For example the index page has no table of contents
return html if (@context.environments.first["page"]["noToc"] || false)
config = @context.registers[:site].config
# Minimum number of items needed to show TOC, default 0 (0 means no minimum)
min_items_to_show_toc = config["minItemsToShowToc"] || 0
anchor_prefix = config["anchorPrefix"] || 'tocAnchor-'
# better for traditional page seo, commonlly use h1 as title
toc_top_tag = config["tocTopTag"] || 'h1'
toc_top_tag = toc_top_tag.gsub(/h/, '').to_i
toc_top_tag = 5 if toc_top_tag > 5
toc_sec_tag = toc_top_tag + 1
toc_top_tag = "h#{toc_top_tag}"
toc_sec_tag = "h#{toc_sec_tag}"
# Text labels
contents_label = config["contentsLabel"] || 'Contents'
hide_label = config["hideLabel"] || 'hide'
# show_label = config["showLabel"] || 'show' # unused
show_toggle_button = config["showToggleButton"]
toc_html = ''
toc_level = 1
toc_section = 1
item_number = 1
level_html = ''
doc = Nokogiri::HTML(html)
# Find H1 tag and all its H2 siblings until next H1
doc.css(toc_top_tag).each do |tag|
# TODO This XPATH expression can greatly improved
ct = tag.xpath("count(following-sibling::#{toc_top_tag})")
sects = tag.xpath("following-sibling::#{toc_sec_tag}[count(following-sibling::#{toc_top_tag})=#{ct}]")
level_html = ''
inner_section = 0
sects.each do |sect|
inner_section += 1
anchor_id = [
anchor_prefix, toc_level, '-', toc_section, '-',
inner_section
].map(&:to_s).join ''
sect['id'] = "#{anchor_id}"
level_html += create_level_html(anchor_id,
toc_level + 1,
toc_section + inner_section,
item_number.to_s + '.' + inner_section.to_s,
sect.text,
'')
end
level_html = '<ul>' + level_html + '</ul>' if level_html.length > 0
anchor_id = anchor_prefix + toc_level.to_s + '-' + toc_section.to_s
tag['id'] = "#{anchor_id}"
toc_html += create_level_html(anchor_id,
toc_level,
toc_section,
item_number,
tag.text,
level_html)
toc_section += 1 + inner_section
item_number += 1
end
# for convenience item_number starts from 1
# so we decrement it to obtain the index count
toc_index_count = item_number - 1
return html unless toc_html.length > 0
hide_html = ''
hide_html = HIDE_HTML.gsub('%1', hide_label) if (show_toggle_button)
if min_items_to_show_toc <= toc_index_count
replaced_toggle_html = TOGGLE_HTML
.gsub('%1', contents_label)
toc_table = TOC_CONTAINER_HTML
.gsub('%1', replaced_toggle_html)
.gsub('%2', hide_html)
.gsub('%3', toc_html)
doc.css('.post-header').after(toc_table)
end
doc.css('body').children.to_xhtml
end
private
def create_level_html(anchor_id, toc_level, toc_section, tocNumber, tocText, tocInner)
link = '<a href="#%1"><span class="tocnumber">%2</span> <span class="toctext">%3</span></a>%4'
.gsub('%1', anchor_id.to_s)
.gsub('%2', tocNumber.to_s)
.gsub('%3', tocText)
.gsub('%4', tocInner ? tocInner : '')
'<li class="toc_level-%1 toc_section-%2">%3</li>'
.gsub('%1', toc_level.to_s)
.gsub('%2', toc_section.to_s)
.gsub('%3', link)
end
end
end
Liquid::Template.register_filter(Jekyll::TOCGenerator)

View File

@ -5,9 +5,10 @@ date: 2017-09-27
permalink: typoclassopedia-exercise-solutions/ permalink: typoclassopedia-exercise-solutions/
categories: programming categories: programming
math: true math: true
toc: true
--- ---
I wanted to get proficient in Haskell so I decided to follow [An [Essential] Haskell Reading List](http://www.stephendiehl.com/posts/essential_haskell.html), there I stumbled upon [Typoclassopedia](https://wiki.haskell.org/Typeclassopedia), while the material is great, I couldn't find solutions for the exercises to check against, so I decided I would write my own and hopefully the solutions would get fixed in case I have gone wrong by others. So if you think a solution is wrong, let me know in the comments! I wanted to get proficient in Haskell so I decided to follow [An [Essential] Haskell Reading List](http://www.stephendiehl.com/posts/essential_haskell.html). There I stumbled upon [Typoclassopedia](https://wiki.haskell.org/Typeclassopedia), while the material is great, I couldn't find solutions for the exercises to check against, so I decided I would write my own and hopefully the solutions would get fixed in case I have gone wrong by others. So if you think a solution is wrong, let me know in the comments!
In each section below, I left some reference material for the exercises and then the solutions. In each section below, I left some reference material for the exercises and then the solutions.
@ -347,3 +348,229 @@ You can check the type of `(flip ($) f) . (flip ($))` is something like this (de
``` ```
Also see [this question on Stack Overflow](https://stackoverflow.com/questions/46503793/applicative-prove-pure-f-x-pure-flip-x-pure-f/46505868#46505868) which includes alternative proofs. Also see [this question on Stack Overflow](https://stackoverflow.com/questions/46503793/applicative-prove-pure-f-x-pure-flip-x-pure-f/46505868#46505868) which includes alternative proofs.
## Instances
Applicative instance of lists as a collection of values:
```haskell
newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
pure :: a -> ZipList a
pure = undefined -- exercise
(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b
(ZipList gs) <*> (ZipList xs) = ZipList (zipWith ($) gs xs)
```
Applicative instance of lists as a non-deterministic computation context:
```haskell
instance Applicative [] where
pure :: a -> [a]
pure x = [x]
(<*>) :: [a -> b] -> [a] -> [b]
gs <*> xs = [ g x | g <- gs, x <- xs ]
```
### Exercises
1. Implement an instance of `Applicative` for `Maybe`.
**Solution**:
```haskell
instance Applicative (Maybe a) where
pure :: a -> Maybe a
pure x = Just x
(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b
_ <*> Nothing = Nothing
Nothing <*> _ = Nothing
(Just f) <*> (Just x) = Just (f x)
```
2. Determine the correct definition of `pure` for the `ZipList` instance of `Applicative`—there is only one implementation that satisfies the law relating `pure` and `(<*>)`.
**Solution**:
```haskell
newtype ZipList a = ZipList { getZipList :: [a] }
instance Functor ZipList where
fmap f (ZipList list) = ZipList { getZipList = fmap f list }
instance Applicative ZipList where
pure = ZipList . pure
(ZipList gs) <*> (ZipList xs) = ZipList (zipWith ($) gs xs)
```
You can check the Applicative laws for this implementation.
## Utility functions
### Exercises
1. Implement a function
`sequenceAL :: Applicative f => [f a] -> f [a]`
There is a generalized version of this, `sequenceA`, which works for any `Traversable` (see the later section on `Traversable`), but implementing this version specialized to lists is a good exercise.
**Solution**:
```haskell
createList = replicate 1
sequenceAL :: Applicative f => [f a] -> f [a]
sequenceAL = foldr (\x b -> ((++) . createList <$> x) <*> b) (pure [])
```
Explanation:
First, `createList` is a simple function for creating a list of a single element, e.g. `createList 2 == [2]`.
Now let's take `sequenceAL` apart, first, it does a fold over the list `[f a]`, and `b` is initialized to `pure []`, which results in `f [a]` as required by the function's output.
Inside the function, `createList <$> x` applies `createList` to the value inside `f a`, resulting in `f [a]`, and then `(++)` is applied to the value again, so it becomes `f ((++) [a])`, now we can apply the function `(++) [a]` to `b` by `((++) . createList <$> x) <*> b`, which results in `f ([a] ++ b)`.
## Alternative formulation
### Definition
```haskell
class Functor f => Monoidal f where
unit :: f ()
(**) :: f a -> f b -> f (a,b)
```
### Laws:
1. Left identity
```haskell
unit ** v ≅ v
```
2. Right identity
```haskell
u ** unit ≅ u
```
3. Associativity
```haskell
u ** (v ** w) ≅ (u ** v) ** w
```
4. Neutrality
```haskell
fmap (g *** h) (u ** v) = fmap g u ** fmap h v
```
### Isomorphism
In the laws above, `≅` refers to isomorphism rather than equality. In particular we consider:
```haskell
(x,()) ≅ x ≅ ((),x)
((x,y),z) ≅ (x,(y,z))
```
### Exercises
instance Applicative [] where
pure :: a -> [a]
pure x = [x]
(<*>) :: [a -> b] -> [a] -> [b]
gs <*> xs = [ g x | g <- gs, x <- xs ]
```haskell
pure id <*> v = v
```
```haskell
pure f <*> pure x = pure (f x)
```
```haskell
u <*> pure y = pure ($ y) <*> u
```
```haskell
u <*> (v <*> w) = pure (.) <*> u <*> v <*> w
```
1. Implement `pure` and `<*>` in terms of `unit` and `**`, and vice versa.
```haskell
unit :: f ()
unit = pure ()
(**) :: f a -> f b -> f (a, b)
a ** b = fmap (,) a <*> b
pure :: a -> f a
pure x = unit ** x
(<*>) :: f (a -> b) -> f a -> f b
f <*> a = fmap (uncurry ($)) (f ** a) = fmap (\(f, a) -> f a) (f ** a)
```
2. Are there any `Applicative` instances for which there are also functions `f () -> ()` and `f (a,b) -> (f a, f b)`, satisfying some "reasonable" laws?
The [`Arrow`](https://wiki.haskell.org/Typeclassopedia#Arrow) type class seems to satisfy these criteria.
```haskell
first unit = ()
(id *** f) (a, b) = (f a, f b)
```
3. (Tricky) Prove that given your implementations from the first exercise, the usual Applicative laws and the Monoidal laws stated above are equivalent.
1. Identity Law
```haskell
pure id <*> v
= fmap (uncurry ($)) ((unit ** id) ** v)
= fmap (uncurry ($)) (id ** v)
= fmap id v
= v
```
2. Homomorphism
```haskell
pure f <*> pure x
= (unit ** f) <*> (unit ** x)
= fmap (\(f, a) -> f a) (unit ** f) (unit ** x)
= fmap (\(f, a) -> f a) (f ** x)
= fmap f x
= pure (f x)
```
3. Interchange
```haskell
u <*> pure y
= fmap (uncurry ($)) (u ** (unit ** y))
= fmap (uncurry ($)) (u ** y)
= fmap (u $) y
= fmap ($ y) u
= pure ($ y) <*> u
4. Composition
```haskell
u <*> (v <*> w)
= fmap (uncurry ($)) (u ** (fmap (uncurry ($)) (v ** w)))
= fmap (uncurry ($)) (u ** (fmap v w))
= fmap u (fmap v w)
= fmap (u . v) w
= pure (.) <*> u <*> v <*> w =
```

29
_sass/toc.scss Normal file
View File

@ -0,0 +1,29 @@
#toc-container {
h2 {
display: inline-block;
}
input, input + span {
margin-left: 1rem;
}
input {
position: absolute;
width: 50px;
height: 20px;
opacity: 0;
margin-top: 10px;
}
input + span::before {
content: '[hide]';
}
input:checked ~ ul {
display: none;
}
input:checked + span::before {
content: '[show]';
}
}

View File

@ -47,5 +47,6 @@ $on-laptop: 800px;
@import @import
"base", "base",
"layout", "layout",
"syntax-highlighting" "syntax-highlighting",
"toc"
; ;