2017-11-19 09:49:36 +00:00
|
|
|
---
|
|
|
|
layout: post
|
|
|
|
title: "Mathematical Induction for proving tiling methods"
|
|
|
|
date: 2017-10-19
|
|
|
|
permalink: mathematical-induction-proving-tiling-methods/
|
|
|
|
categories: math
|
|
|
|
math: true
|
|
|
|
author: Mahdi
|
|
|
|
---
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
On my way towards self-taught data science, I've stumbled upon the need to be
|
|
|
|
proficient with mathematical proofs, so I picked up the amazing [How To Prove
|
|
|
|
It: A Structured
|
|
|
|
Approach](https://www.amazon.com/How-Prove-It-Structured-Approach/dp/0521675995)
|
|
|
|
by Daniel J. Velleman; and I've been fascinated by mathematical proofs since
|
|
|
|
then.
|
2017-11-19 09:49:36 +00:00
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
One of the uses for [Mathematical
|
|
|
|
Induction](https://en.wikipedia.org/wiki/Mathematical_induction) which I've
|
|
|
|
found to be pretty cool is proving methods for tiling shapes.
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
Here is an example:
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Suppose $n$ is a positive integer. An equilateral triangle is cut into $4^n$
|
|
|
|
congruent equilateral triangles, and one corner is removed. Show that the
|
|
|
|
remaining area can be covered by trapezoidal tiles like this: <img
|
|
|
|
src='/img/tiling/trapezoidal.jpg' class='inline' width='30'/>
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
<canvas id='tiling-triangle' width='200' height='200' class='centered'></canvas>
|
|
|
|
{% include caption.html text='An example of n = 2. The dark tile is removed.' %}
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Just to be clear, by _cover_ we mean covering without any overlaps, so you can't
|
|
|
|
have two overlapping trapezoidal tiles.
|
2017-11-19 09:49:36 +00:00
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
As with any mathematical induction solution, we start with the base case, which
|
|
|
|
is $n = 1$, in that case the triangle looks like this:
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
<canvas id='base-case' width='100' height='100' class='centered'></canvas>
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
In this case, it's obvious that we can cover the leftover area using trapezoidal
|
|
|
|
tiles consisting of three equilateral triangles (the second row), so:
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
----
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Base case: $n = 1$ then the triangle has $4^1 = 4$ tiles, and by removing the
|
|
|
|
top-most tile, the second row can be covered using a single trapezoidal tile.
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
----
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Now for the induction step, we have to somehow show that after adding 1 to $n$,
|
|
|
|
that is, by multiplying the tiles by $4$, we can still cover the triangle by
|
|
|
|
trapezoidal tiles. To show this, we start by assuming we have a triangle with
|
|
|
|
$4^n$ tiles, which we know can be covered by trapezoidal tiles, then we add the
|
|
|
|
new tiles and show that they, too, can be covered by trapezoidal tiles.
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
----
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Induction Step: Suppose we have a triangle split into $4^n$ tiles, and we know
|
|
|
|
by induction hypothesis that it can be covered by trapezoidal tiles.
|
2017-11-19 11:14:53 +00:00
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Now suppose we have another triangle with $4^{n+1}$ tiles, that means, $4$ times
|
|
|
|
as many triangles as our original triangle. We can then group the new bigger
|
|
|
|
triangle into 4 congruent triangles, one of which we know can be split into
|
|
|
|
trapezoidal tiles by removing one of it's tiles.
|
2017-11-19 11:14:53 +00:00
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
For the three left triangles, we can find a neighbouring corner and assume the
|
|
|
|
tile on that corner to be removed, and then cover the rest by trapezoidal tiles.
|
|
|
|
Afterwards, since we had three such corners, and they are neighbouring corners,
|
|
|
|
we can cover these three corners with one trapezoidal tile, thus completing the
|
|
|
|
triangle.
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
----
|
|
|
|
|
|
|
|
Now that's a mouthful, in simpler terms, we are following these steps (for $n = 2$):
|
|
|
|
|
|
|
|
<canvas id='n-2' width='200' height='200' class='centered'></canvas>
|
|
|
|
|
|
|
|
First, we split the whole triangle into 4 smaller groups:
|
|
|
|
|
|
|
|
<canvas id='n-2-grouped' width='200' height='200' class='centered'></canvas>
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Then, we know that one of the triangles can be covered by trapezoidal tiles if
|
|
|
|
we remove one of it's tiles, that's the induction hypothesis (the case for $4^n$
|
|
|
|
which is proved in the base case):
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
<canvas id='n-2-grouped-removed' width='200' height='200' class='centered'></canvas>
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Leaving the top triangle behind, we now find neighbouring corners among the
|
|
|
|
three left triangles, and we assume the tiles in those corners to be removed
|
|
|
|
(they are not actually removed as we are constrained to remove only one tile):
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
<canvas id='n-2-grouped-neighbours' width='200' height='200' class='centered'></canvas>
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Now we can cover the rest of these triangles by a single trapezoidal tile,
|
|
|
|
similar to the case of $n = 1$.
|
2017-11-19 09:49:36 +00:00
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
Afterwards, we see that the three neighbouring tiles form a trapezoidal tile,
|
|
|
|
therefore we can now put the last piece there to complete the tiles.
|
2017-11-19 09:49:36 +00:00
|
|
|
|
|
|
|
<canvas id='final' width='200' height='200' class='centered'></canvas>
|
|
|
|
|
2022-07-27 08:48:57 +00:00
|
|
|
This procedure can be applied recursively on larger values of $n$ as well, so
|
|
|
|
this concludes a proof of tiling an equilateral triangle divided into $4^n$
|
|
|
|
equilateral triangles using trapezoidal tiles after removing a single piece.
|
2017-11-19 10:27:56 +00:00
|
|
|
|
2017-11-19 09:49:36 +00:00
|
|
|
<script>
|
|
|
|
(function() {
|
|
|
|
var tilingTriangle = document.getElementById('tiling-triangle');
|
|
|
|
var c = tilingTriangle.getContext('2d');
|
|
|
|
|
|
|
|
function TriangleCanvas(id) {
|
|
|
|
this.element = document.getElementById(id);
|
|
|
|
this.context = this.element.getContext('2d');
|
|
|
|
}
|
|
|
|
|
|
|
|
function modifyColor(c, p) {
|
|
|
|
var e = document.createElement('i');
|
|
|
|
e.style.background = c;
|
|
|
|
var r = getComputedStyle(e).backgroundColor.slice(4, -1).split(',').map(parseFloat);
|
|
|
|
return 'rgb(' + [r[0] + p, r[1] + p, r[2] + p].join(',') + ')';
|
|
|
|
}
|
|
|
|
|
|
|
|
function dedup(list) {
|
|
|
|
return list.reduce(function(newList, item) {
|
|
|
|
if (!newList.some(function(a) { return deepCompare(a, item) })) {
|
|
|
|
return newList.concat(item);
|
|
|
|
}
|
|
|
|
return newList;
|
|
|
|
}, []);
|
|
|
|
}
|
|
|
|
|
|
|
|
function deepCompare () {
|
|
|
|
var i, l, leftChain, rightChain;
|
|
|
|
|
|
|
|
function compare2Objects (x, y) {
|
|
|
|
var p;
|
|
|
|
|
|
|
|
// remember that NaN === NaN returns false
|
|
|
|
// and isNaN(undefined) returns true
|
|
|
|
if (isNaN(x) && isNaN(y) && typeof x === 'number' && typeof y === 'number') {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compare primitives and functions.
|
|
|
|
// Check if both arguments link to the same object.
|
|
|
|
// Especially useful on the step where we compare prototypes
|
|
|
|
if (x === y) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Works in case when functions are created in constructor.
|
|
|
|
// Comparing dates is a common scenario. Another built-ins?
|
|
|
|
// We can even handle functions passed across iframes
|
|
|
|
if ((typeof x === 'function' && typeof y === 'function') ||
|
|
|
|
(x instanceof Date && y instanceof Date) ||
|
|
|
|
(x instanceof RegExp && y instanceof RegExp) ||
|
|
|
|
(x instanceof String && y instanceof String) ||
|
|
|
|
(x instanceof Number && y instanceof Number)) {
|
|
|
|
return x.toString() === y.toString();
|
|
|
|
}
|
|
|
|
|
|
|
|
// At last checking prototypes as good as we can
|
|
|
|
if (!(x instanceof Object && y instanceof Object)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x.isPrototypeOf(y) || y.isPrototypeOf(x)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x.constructor !== y.constructor) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x.prototype !== y.prototype) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for infinitive linking loops
|
|
|
|
if (leftChain.indexOf(x) > -1 || rightChain.indexOf(y) > -1) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Quick checking of one object being a subset of another.
|
|
|
|
// todo: cache the structure of arguments[0] for performance
|
|
|
|
for (p in y) {
|
|
|
|
if (y.hasOwnProperty(p) !== x.hasOwnProperty(p)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
else if (typeof y[p] !== typeof x[p]) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (p in x) {
|
|
|
|
if (y.hasOwnProperty(p) !== x.hasOwnProperty(p)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
else if (typeof y[p] !== typeof x[p]) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (typeof (x[p])) {
|
|
|
|
case 'object':
|
|
|
|
case 'function':
|
|
|
|
|
|
|
|
leftChain.push(x);
|
|
|
|
rightChain.push(y);
|
|
|
|
|
|
|
|
if (!compare2Objects (x[p], y[p])) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
leftChain.pop();
|
|
|
|
rightChain.pop();
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
if (x[p] !== y[p]) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (arguments.length < 1) {
|
|
|
|
return true; //Die silently? Don't know how to handle such case, please help...
|
|
|
|
// throw "Need two or more arguments to compare";
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 1, l = arguments.length; i < l; i++) {
|
|
|
|
|
|
|
|
leftChain = []; //Todo: this can be cached
|
|
|
|
rightChain = [];
|
|
|
|
|
|
|
|
if (!compare2Objects(arguments[0], arguments[i])) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
TriangleCanvas.prototype.drawTriangle = function(x, y, size, fill, reversed) {
|
|
|
|
var c = this.context;
|
|
|
|
var corners = [{
|
|
|
|
x: x,
|
|
|
|
y: y,
|
|
|
|
}, {
|
|
|
|
x: x - size / 2,
|
|
|
|
y: y + size,
|
|
|
|
}, {
|
|
|
|
x: x + size / 2,
|
|
|
|
y: y + size,
|
|
|
|
}];
|
|
|
|
|
|
|
|
if (reversed) {
|
|
|
|
corners = [{
|
|
|
|
x: x + size / 2,
|
|
|
|
y: y,
|
|
|
|
}, {
|
|
|
|
x: x - size / 2,
|
|
|
|
y: y,
|
|
|
|
}, {
|
|
|
|
x: x,
|
|
|
|
y: y + size
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fill) {
|
|
|
|
this.drawShape(corners, modifyColor(fill, 20), fill);
|
|
|
|
} else {
|
|
|
|
this.drawShape(corners);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TriangleCanvas.prototype.drawTrapezoid = function(tiles, size, strokeStyle, fillStyle) {
|
|
|
|
var corners = tiles
|
|
|
|
.map(function(o) {
|
|
|
|
return { x: o[0] * size, y: o[1] * size };
|
|
|
|
});
|
|
|
|
|
|
|
|
console.log(corners);
|
|
|
|
|
|
|
|
this.drawShape(corners, strokeStyle, fillStyle);
|
|
|
|
}
|
|
|
|
|
|
|
|
TriangleCanvas.prototype.drawShape = function(corners, strokeStyle, fillStyle) {
|
|
|
|
var c = this.context;
|
|
|
|
c.beginPath();
|
|
|
|
|
|
|
|
c.moveTo(corners[0].x, corners[0].y);
|
|
|
|
corners.slice(1).concat([corners[0]]).forEach(function(object, index) {
|
|
|
|
c.lineTo(object.x, object.y);
|
|
|
|
});
|
|
|
|
|
|
|
|
c.closePath();
|
|
|
|
if (fillStyle) {
|
|
|
|
c.fillStyle = fillStyle;
|
|
|
|
c.fill();
|
|
|
|
}
|
|
|
|
if (strokeStyle) c.strokeStyle = strokeStyle;
|
|
|
|
c.stroke();
|
|
|
|
}
|
|
|
|
|
|
|
|
TriangleCanvas.prototype.drawSplittedTriangle = function(x, y, size, split, blocks, rest) {
|
|
|
|
var c = this.context;
|
|
|
|
|
|
|
|
var rows = Math.sqrt(split);
|
|
|
|
var rowHeight = size / rows;
|
|
|
|
var triangleSize = size / rows;
|
|
|
|
|
|
|
|
for (var i = 0; i < rows * 2; i += 2) {
|
|
|
|
var row = Math.floor(i / 2);
|
|
|
|
|
|
|
|
for (var j = 0; j < i + 1; j++) {
|
|
|
|
var position = {
|
|
|
|
x: x + triangleSize * j / 2 - (row * triangleSize / 2),
|
|
|
|
y: y + row * rowHeight,
|
|
|
|
};
|
|
|
|
|
|
|
|
var block = blocks.reduce(function(c, a) {
|
|
|
|
return (a[0] === row && a[1] === j) ? (a[2] || 'black') : c;
|
|
|
|
}, null);
|
|
|
|
|
|
|
|
this.drawTriangle(position.x, position.y, triangleSize, block || rest, j % 2 == 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var c1 = new TriangleCanvas('tiling-triangle');
|
|
|
|
c1.drawSplittedTriangle(100, 0, 200, Math.pow(4, 2), [[0, 0, '#435062']], '#92afd7');
|
|
|
|
|
|
|
|
var c2 = new TriangleCanvas('base-case');
|
|
|
|
c2.drawSplittedTriangle(50, 0, 100, 4, [[0, 0, '#435062']], '#92afd7');
|
|
|
|
|
|
|
|
var c3 = new TriangleCanvas('n-2');
|
|
|
|
c3.drawSplittedTriangle(100, 0, 200, Math.pow(4, 2), [[0, 0, '#435062']], '#92afd7');
|
|
|
|
|
|
|
|
var c4 = new TriangleCanvas('n-2-grouped');
|
|
|
|
var groups = [
|
|
|
|
[0, 0, '#809bce'], [1, 0, '#809bce'], [1, 1, '#809bce'], [1, 2, '#809bce'],
|
|
|
|
[2, 0, '#95b8d1'], [3, 0, '#95b8d1'], [3, 1, '#95b8d1'], [3, 2, '#95b8d1'],
|
|
|
|
[2, 1, '#b8e0d2'], [2, 2, '#b8e0d2'], [2, 3, '#b8e0d2'], [3, 3, '#b8e0d2'],
|
|
|
|
[2, 4, '#d6eadf'], [3, 4, '#d6eadf'], [3, 5, '#d6eadf'], [3, 6, '#d6eadf'],
|
|
|
|
];
|
|
|
|
c4.drawSplittedTriangle(100, 0, 200, Math.pow(4, 2), groups);
|
|
|
|
|
|
|
|
var c5 = new TriangleCanvas('n-2-grouped-removed');
|
|
|
|
var groups = [
|
|
|
|
[0, 0, 'rgb(90, 90, 90)'], [1, 0, '#809bce'], [1, 1, '#809bce'], [1, 2, '#809bce'],
|
|
|
|
[2, 0, '#95b8d1'], [3, 0, '#95b8d1'], [3, 1, '#95b8d1'], [3, 2, '#95b8d1'],
|
|
|
|
[2, 1, '#b8e0d2'], [2, 2, '#b8e0d2'], [2, 3, '#b8e0d2'], [3, 3, '#b8e0d2'],
|
|
|
|
[2, 4, '#d6eadf'], [3, 4, '#d6eadf'], [3, 5, '#d6eadf'], [3, 6, '#d6eadf'],
|
|
|
|
];
|
|
|
|
c5.drawSplittedTriangle(100, 0, 200, Math.pow(4, 2), groups);
|
|
|
|
c5.context.strokeStyle = '#ff7777';
|
|
|
|
c5.context.lineWidth = 3;
|
|
|
|
c5.drawTriangle(100, 0, 100);
|
|
|
|
|
|
|
|
var c6 = new TriangleCanvas('n-2-grouped-neighbours');
|
|
|
|
var groups = [
|
|
|
|
[0, 0, '#e7ecf6'], [1, 0, '#e7ecf6'], [1, 1, '#e7ecf6'], [1, 2, '#e7ecf6'],
|
|
|
|
[2, 0, '#95b8d1'], [3, 0, '#95b8d1'], [3, 1, '#95b8d1'], [3, 2, '#6d8699'],
|
|
|
|
[2, 1, '#b8e0d2'], [2, 2, '#b8e0d2'], [2, 3, '#b8e0d2'], [3, 3, '#657b73'],
|
|
|
|
[2, 4, '#d6eadf'], [3, 4, '#89958e'], [3, 5, '#d6eadf'], [3, 6, '#d6eadf'],
|
|
|
|
];
|
|
|
|
c6.drawSplittedTriangle(100, 0, 200, Math.pow(4, 2), groups);
|
|
|
|
|
|
|
|
var trapezoids = [
|
|
|
|
[[1, 2], [3, 2], [2.5, 3], [1.5, 3]],
|
|
|
|
[[1, 2], [1.5, 3], [1, 4], [0, 4]],
|
|
|
|
[[3, 2], [4, 4], [3, 4], [2.5, 3]],
|
|
|
|
];
|
|
|
|
c6.drawTrapezoid(trapezoids[0], 200 / 4, '#ff7777');
|
|
|
|
c6.drawTrapezoid(trapezoids[1], 200 / 4, '#ff7777');
|
|
|
|
c6.drawTrapezoid(trapezoids[2], 200 / 4, '#ff7777');
|
|
|
|
|
|
|
|
var c7 = new TriangleCanvas('final');
|
|
|
|
var groups = [
|
|
|
|
[0, 0, '#435062'], [1, 0, '#92afd7'], [1, 1, '#92afd7'], [1, 2, '#92afd7'],
|
|
|
|
[2, 0, '#95b8d1'], [3, 0, '#95b8d1'], [3, 1, '#95b8d1'], [3, 2, '#95b8d1'],
|
|
|
|
[2, 1, '#b8e0d2'], [2, 2, '#b8e0d2'], [2, 3, '#b8e0d2'], [3, 3, '#b8e0d2'],
|
|
|
|
[2, 4, '#d6eadf'], [3, 4, '#d6eadf'], [3, 5, '#d6eadf'], [3, 6, '#d6eadf'],
|
|
|
|
];
|
|
|
|
c7.drawSplittedTriangle(100, 0, 200, Math.pow(4, 2), groups);
|
|
|
|
|
|
|
|
var trapezoids = [
|
|
|
|
[[1.5, 1], [2.5, 1], [3, 2], [1, 2]],
|
|
|
|
[[1, 2], [3, 2], [2.5, 3], [1.5, 3]],
|
|
|
|
[[1, 2], [1.5, 3], [1, 4], [0, 4]],
|
|
|
|
[[3, 2], [4, 4], [3, 4], [2.5, 3]],
|
|
|
|
[[1.5, 3], [1, 4], [3, 4], [2.5, 3]],
|
|
|
|
];
|
|
|
|
trapezoids.forEach(function(el) {
|
|
|
|
c7.drawTrapezoid(el, 200 / 4, '#ff7777');
|
|
|
|
});
|
|
|
|
}());
|
|
|
|
</script>
|