feat(crossEntropy): crossEntropy cost function
This commit is contained in:
parent
49606406d1
commit
493a20eb0a
BIN
examples/xor
BIN
examples/xor
Binary file not shown.
@ -7,20 +7,27 @@ module Main where
|
||||
main = do
|
||||
let learning_rate = 0.5
|
||||
(iterations, epochs) = (2, 1000)
|
||||
rnetwork = randomNetwork 0 2 [8] 1 -- two inputs, 8 nodes in a single hidden layer, 1 output
|
||||
a = (logistic, logistic')
|
||||
rnetwork = randomNetwork 0 2 [(8, a)] (1, a) -- two inputs, 8 nodes in a single hidden layer, 1 output
|
||||
|
||||
inputs = [vector [0, 1], vector [1, 0], vector [1, 1], vector [0, 0]]
|
||||
labels = [vector [1], vector [1], vector [0], vector [0]]
|
||||
|
||||
initial_cost = zipWith crossEntropy (map (`forward` rnetwork) inputs) labels
|
||||
|
||||
network = session inputs rnetwork labels learning_rate (iterations, epochs)
|
||||
results = map (`forward` network) inputs
|
||||
rounded = map (map round . toList) results
|
||||
|
||||
cost = zipWith crossEntropy (map (`forward` network) inputs) labels
|
||||
|
||||
putStrLn "parameters: "
|
||||
putStrLn $ "- inputs: " ++ show inputs
|
||||
putStrLn $ "- labels: " ++ show labels
|
||||
putStrLn $ "- learning rate: " ++ show learning_rate
|
||||
putStrLn $ "- iterations/epochs: " ++ show (iterations, epochs)
|
||||
putStrLn $ "- initial cost (cross-entropy): " ++ show initial_cost
|
||||
putStrLn "results: "
|
||||
putStrLn $ "- actual result: " ++ show results
|
||||
putStrLn $ "- rounded result: " ++ show rounded
|
||||
putStrLn $ "- cost (cross-entropy): " ++ show cost
|
||||
|
@ -19,6 +19,7 @@ library
|
||||
build-depends: base >= 4.7 && < 5
|
||||
, hmatrix
|
||||
, random
|
||||
, deepseq
|
||||
default-language: Haskell2010
|
||||
|
||||
executable sibe-exe
|
||||
|
95
src/Sibe.hs
95
src/Sibe.hs
@ -8,49 +8,84 @@ module Sibe
|
||||
Layer,
|
||||
Input,
|
||||
Output,
|
||||
Activation,
|
||||
forward,
|
||||
randomLayer,
|
||||
randomNetwork,
|
||||
saveNetwork,
|
||||
loadNetwork,
|
||||
train,
|
||||
session,
|
||||
shuffle,
|
||||
logistic,
|
||||
logistic',
|
||||
crossEntropy,
|
||||
genSeed,
|
||||
replaceVector
|
||||
) where
|
||||
import Numeric.LinearAlgebra
|
||||
import System.Random
|
||||
import Debug.Trace
|
||||
import Data.List (foldl', sortBy)
|
||||
import System.IO
|
||||
import Control.DeepSeq
|
||||
|
||||
type LearningRate = Double
|
||||
type Input = Vector Double
|
||||
type Output = Vector Double
|
||||
type Activation = (Vector Double -> Vector Double, Vector Double -> Vector Double)
|
||||
|
||||
data Layer = L { biases :: !(Vector Double)
|
||||
, nodes :: !(Matrix Double)
|
||||
} deriving (Show)
|
||||
, activation :: Activation
|
||||
}
|
||||
|
||||
instance Show Layer where
|
||||
show (L biases nodes _) = "(" ++ show biases ++ "," ++ show nodes ++ ")"
|
||||
|
||||
data Network = O Layer
|
||||
| Layer :- Network
|
||||
deriving (Show)
|
||||
infixr 5 :-
|
||||
|
||||
saveNetwork :: Network -> String -> IO ()
|
||||
saveNetwork network file =
|
||||
writeFile file ((show . reverse) (gen network []))
|
||||
where
|
||||
gen (O (L biases nodes _)) list = (biases, nodes) : list
|
||||
gen (L biases nodes _ :- n) list = gen n $ (biases, nodes) : list
|
||||
|
||||
loadNetwork :: [Activation] -> String -> IO Network
|
||||
loadNetwork activations file = do
|
||||
handle <- openFile file ReadMode
|
||||
content <- hGetContents handle
|
||||
let list = read content :: [(Vector Double, Matrix Double)]
|
||||
network = gen list activations
|
||||
content `deepseq` hClose handle
|
||||
return network
|
||||
|
||||
where
|
||||
gen [(biases, nodes)] [a] = O (L biases nodes a)
|
||||
gen ((biases, nodes):hs) (a:as) = L biases nodes a :- gen hs as
|
||||
|
||||
runLayer :: Input -> Layer -> Output
|
||||
runLayer input (L !biases !weights) = input <# weights + biases
|
||||
runLayer input (L !biases !weights _) = input <# weights + biases
|
||||
|
||||
forward :: Input -> Network -> Output
|
||||
forward input (O l) = logistic $ runLayer input l
|
||||
forward input (l :- n) = forward (logistic $ runLayer input l) n
|
||||
forward input (O l@(L _ _ (fn, _))) = fn $ runLayer input l
|
||||
forward input (l@(L _ _ (fn, _)) :- n) = forward ((fst . activation $ l) $ runLayer input l) n
|
||||
|
||||
randomLayer :: Seed -> (Int, Int) -> Layer
|
||||
randomLayer :: Seed -> (Int, Int) -> Activation -> Layer
|
||||
randomLayer seed (wr, wc) =
|
||||
let weights = uniformSample seed wr $ replicate wc (-1, 1)
|
||||
biases = randomVector seed Uniform wc * 2 - 1
|
||||
in L biases weights
|
||||
|
||||
randomNetwork :: Seed -> Int -> [Int] -> Int -> Network
|
||||
randomNetwork seed input [] output =
|
||||
O $ randomLayer seed (input, output)
|
||||
randomNetwork seed input (h:hs) output =
|
||||
randomLayer seed (input, h) :-
|
||||
randomNetwork :: Seed -> Int -> [(Int, Activation)] -> (Int, Activation) -> Network
|
||||
randomNetwork seed input [] (output, a) =
|
||||
O $ randomLayer seed (input, output) a
|
||||
randomNetwork seed input ((h, a):hs) output =
|
||||
randomLayer seed (input, h) a :-
|
||||
randomNetwork (seed + 1) h hs output
|
||||
|
||||
logistic :: Vector Double -> Vector Double
|
||||
@ -59,6 +94,14 @@ module Sibe
|
||||
logistic' :: Vector Double -> Vector Double
|
||||
logistic' x = logistic x * (1 - logistic x)
|
||||
|
||||
crossEntropy :: Output -> Output -> Double
|
||||
crossEntropy output target =
|
||||
let pairs = zip (toList output) (toList target)
|
||||
n = fromIntegral (length pairs)
|
||||
in (-1 / n) * sum (map f pairs)
|
||||
where
|
||||
f (a, y) = y * log a + (1 - y) * log (1 - a)
|
||||
|
||||
train :: Input
|
||||
-> Network
|
||||
-> Output -- target
|
||||
@ -67,30 +110,31 @@ module Sibe
|
||||
train input network target alpha = fst $ run input network
|
||||
where
|
||||
run :: Input -> Network -> (Network, Vector Double)
|
||||
run input (O l@(L biases weights)) =
|
||||
run input (O l@(L biases weights (fn, fn'))) =
|
||||
let y = runLayer input l
|
||||
o = logistic y
|
||||
o = fn y
|
||||
delta = o - target
|
||||
de = delta * logistic' y
|
||||
-- de = delta * fn' y -- quadratic cost
|
||||
de = delta -- cross entropy cost
|
||||
|
||||
biases' = biases - scale alpha de
|
||||
weights' = weights - scale alpha (input `outer` de) -- small inputs learn slowly
|
||||
layer = L biases' weights' -- updated layer
|
||||
layer = L biases' weights' (fn, fn') -- updated layer
|
||||
|
||||
pass = weights #> de
|
||||
-- pass = weights #> de
|
||||
|
||||
in (O layer, pass)
|
||||
run input (l@(L biases weights) :- n) =
|
||||
run input (l@(L biases weights (fn, fn')) :- n) =
|
||||
let y = runLayer input l
|
||||
o = logistic y
|
||||
o = fn y
|
||||
(n', delta) = run o n
|
||||
|
||||
de = delta * logistic' y
|
||||
de = delta * fn' y -- quadratic cost
|
||||
|
||||
biases' = biases - scale alpha de
|
||||
weights' = weights - scale alpha (input `outer` de)
|
||||
layer = L biases' weights'
|
||||
layer = L biases' weights' (fn, fn')
|
||||
|
||||
pass = weights #> de
|
||||
-- pass = weights #> de
|
||||
@ -115,3 +159,18 @@ module Sibe
|
||||
in map snd $ sortBy (\x y -> fst x) (zip ords list)
|
||||
where ord x | x == 0 = LT
|
||||
| x == 1 = GT
|
||||
|
||||
genSeed :: IO Seed
|
||||
genSeed = do
|
||||
(seed, _) <- random <$> newStdGen :: IO (Int, StdGen)
|
||||
return seed
|
||||
|
||||
replaceVector :: Vector Double -> Int -> Double -> Vector Double
|
||||
replaceVector vec index value =
|
||||
let list = toList vec
|
||||
in fromList $ rrow index list
|
||||
where
|
||||
rrow index [] = []
|
||||
rrow index (x:xs)
|
||||
| index == index = value:xs
|
||||
| otherwise = x : rrow (index + 1) xs
|
||||
|
Loading…
Reference in New Issue
Block a user