fix(stack): use stack build and exec instead of manual stack ghc
refactor: rename from Lib to Sibe
This commit is contained in:
109
src/Sibe.hs
Normal file
109
src/Sibe.hs
Normal file
@@ -0,0 +1,109 @@
|
||||
{-# LANGUAGE GADTs #-}
|
||||
{-# LANGUAGE BangPatterns #-}
|
||||
{-# LANGUAGE DataKinds #-}
|
||||
{-# LANGUAGE TypeOperators #-}
|
||||
|
||||
module Sibe
|
||||
(Network(..),
|
||||
Layer,
|
||||
Input,
|
||||
Output,
|
||||
forward,
|
||||
randomLayer,
|
||||
train,
|
||||
session,
|
||||
shuffle,
|
||||
) where
|
||||
import Numeric.LinearAlgebra
|
||||
import System.Random
|
||||
import Debug.Trace
|
||||
import Data.List (foldl', sortBy)
|
||||
|
||||
type LearningRate = Double
|
||||
type Input = Vector Double
|
||||
type Output = Vector Double
|
||||
|
||||
data Layer = L { biases :: !(Vector Double)
|
||||
, nodes :: !(Matrix Double)
|
||||
} deriving (Show)
|
||||
|
||||
data Network = O Layer
|
||||
| Layer :- Network
|
||||
deriving (Show)
|
||||
infixr 5 :-
|
||||
|
||||
runLayer :: Input -> Layer -> Output
|
||||
runLayer input (L !biases !weights) = input <# weights + biases
|
||||
|
||||
forward :: Input -> Network -> Output
|
||||
forward input (O l) = cmap logistic $ runLayer input l
|
||||
forward input (l :- n) = forward (cmap logistic $ runLayer input l) n
|
||||
|
||||
randomLayer :: Seed -> (Int, Int) -> Layer
|
||||
randomLayer seed (wr, wc) =
|
||||
let weights = uniformSample seed wr $ replicate wc (-1, 1)
|
||||
biases = randomVector seed Uniform wc * 2 - 1
|
||||
in L biases weights
|
||||
|
||||
logistic :: Double -> Double
|
||||
logistic x = 1 / (1 + exp (-x))
|
||||
|
||||
logistic' :: Double -> Double
|
||||
logistic' x = logistic x / max 1e-10 (1 - logistic x)
|
||||
|
||||
train :: Input
|
||||
-> Network
|
||||
-> Output -- target
|
||||
-> Double -- learning rate
|
||||
-> Network -- network's output
|
||||
train input network target alpha = fst $ run input network
|
||||
where
|
||||
run :: Input -> Network -> (Network, Vector Double)
|
||||
run input (O l@(L biases weights)) =
|
||||
let y = runLayer input l
|
||||
o = cmap logistic y
|
||||
delta = o - target
|
||||
de = delta * cmap logistic' o
|
||||
|
||||
biases' = biases - scale alpha de
|
||||
weights' = weights - scale alpha (input `outer` de) -- small inputs learn slowly
|
||||
layer = L biases' weights' -- updated layer
|
||||
|
||||
pass = weights #> de
|
||||
-- pass = weights #> de
|
||||
|
||||
in (O layer, pass)
|
||||
run input (l@(L biases weights) :- n) =
|
||||
let y = runLayer input l
|
||||
o = cmap logistic y
|
||||
(n', delta) = run o n
|
||||
|
||||
de = delta * cmap logistic' o
|
||||
|
||||
biases' = biases - scale alpha de
|
||||
weights' = weights - scale alpha (input `outer` de)
|
||||
layer = L biases' weights'
|
||||
|
||||
pass = weights #> de
|
||||
-- pass = weights #> de
|
||||
in (layer :- n', pass)
|
||||
|
||||
session :: [Input] -> Network -> [Output] -> Double -> (Int, Int) -> Network
|
||||
session inputs network labels alpha (iterations, epochs) =
|
||||
let n = length inputs
|
||||
indexes = shuffle n (map (`mod` n) [0..n * epochs])
|
||||
in foldl' iter network indexes
|
||||
where
|
||||
iter net i =
|
||||
let n = length inputs
|
||||
index = i `mod` n
|
||||
input = inputs !! index
|
||||
label = labels !! index
|
||||
in foldl' (\net _ -> train input net label alpha) net [0..iterations]
|
||||
|
||||
shuffle :: Seed -> [a] -> [a]
|
||||
shuffle seed list =
|
||||
let ords = map ord $ take (length list) (randomRs (0, 1) (mkStdGen seed) :: [Int])
|
||||
in map snd $ sortBy (\x y -> fst x) (zip ords list)
|
||||
where ord x | x == 0 = LT
|
||||
| x == 1 = GT
|
||||
Reference in New Issue
Block a user