fireball/lib/renderers/shaders/ShaderChunk/bsdfs.glsl
2018-12-25 17:29:22 +03:30

296 lines
9.2 KiB
GLSL
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {
#if defined ( PHYSICALLY_CORRECT_LIGHTS )
// based upon Frostbite 3 Moving to Physically-based Rendering
// page 32, equation 26: E[window1]
// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
// this is intended to be used on spot and point lights who are represented as luminous intensity
// but who must be converted to luminous irradiance for surface lighting calculation
float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );
if( cutoffDistance > 0.0 ) {
distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );
}
return distanceFalloff;
#else
if( cutoffDistance > 0.0 && decayExponent > 0.0 ) {
return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );
}
return 1.0;
#endif
}
vec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {
return RECIPROCAL_PI * diffuseColor;
} // validated
vec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {
// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotLH, 5.0 );
// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
float fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );
return ( 1.0 - specularColor ) * fresnel + specularColor;
} // validated
// Microfacet Models for Refraction through Rough Surfaces - equation (34)
// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html
// alpha is "roughness squared" in Disneys reparameterization
float G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {
// geometry term (normalized) = G(l)⋅G(v) / 4(n⋅l)(n⋅v)
// also see #12151
float a2 = pow2( alpha );
float gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );
float gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );
return 1.0 / ( gl * gv );
} // validated
// Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2
// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
float G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {
float a2 = pow2( alpha );
// dotNL and dotNV are explicitly swapped. This is not a mistake.
float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );
float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );
return 0.5 / max( gv + gl, EPSILON );
}
// Microfacet Models for Refraction through Rough Surfaces - equation (33)
// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html
// alpha is "roughness squared" in Disneys reparameterization
float D_GGX( const in float alpha, const in float dotNH ) {
float a2 = pow2( alpha );
float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1
return RECIPROCAL_PI * a2 / pow2( denom );
}
// GGX Distribution, Schlick Fresnel, GGX-Smith Visibility
vec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {
float alpha = pow2( roughness ); // UE4's roughness
vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );
float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );
float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );
float dotNH = saturate( dot( geometry.normal, halfDir ) );
float dotLH = saturate( dot( incidentLight.direction, halfDir ) );
vec3 F = F_Schlick( specularColor, dotLH );
float G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );
float D = D_GGX( alpha, dotNH );
return F * ( G * D );
} // validated
// Rect Area Light
// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines
// by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt
// code: https://github.com/selfshadow/ltc_code/
vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {
const float LUT_SIZE = 64.0;
const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;
const float LUT_BIAS = 0.5 / LUT_SIZE;
float dotNV = saturate( dot( N, V ) );
// texture parameterized by sqrt( GGX alpha ) and sqrt( 1 - cos( theta ) )
vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );
uv = uv * LUT_SCALE + LUT_BIAS;
return uv;
}
float LTC_ClippedSphereFormFactor( const in vec3 f ) {
// Real-Time Area Lighting: a Journey from Research to Production (p.102)
// An approximation of the form factor of a horizon-clipped rectangle.
float l = length( f );
return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );
}
vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {
float x = dot( v1, v2 );
float y = abs( x );
// rational polynomial approximation to theta / sin( theta ) / 2PI
float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;
float b = 3.4175940 + ( 4.1616724 + y ) * y;
float v = a / b;
float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;
return cross( v1, v2 ) * theta_sintheta;
}
vec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {
// bail if point is on back side of plane of light
// assumes ccw winding order of light vertices
vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];
vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];
vec3 lightNormal = cross( v1, v2 );
if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );
// construct orthonormal basis around N
vec3 T1, T2;
T1 = normalize( V - N * dot( V, N ) );
T2 = - cross( N, T1 ); // negated from paper; possibly due to a different handedness of world coordinate system
// compute transform
mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );
// transform rect
vec3 coords[ 4 ];
coords[ 0 ] = mat * ( rectCoords[ 0 ] - P );
coords[ 1 ] = mat * ( rectCoords[ 1 ] - P );
coords[ 2 ] = mat * ( rectCoords[ 2 ] - P );
coords[ 3 ] = mat * ( rectCoords[ 3 ] - P );
// project rect onto sphere
coords[ 0 ] = normalize( coords[ 0 ] );
coords[ 1 ] = normalize( coords[ 1 ] );
coords[ 2 ] = normalize( coords[ 2 ] );
coords[ 3 ] = normalize( coords[ 3 ] );
// calculate vector form factor
vec3 vectorFormFactor = vec3( 0.0 );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );
// adjust for horizon clipping
float result = LTC_ClippedSphereFormFactor( vectorFormFactor );
/*
// alternate method of adjusting for horizon clipping (see referece)
// refactoring required
float len = length( vectorFormFactor );
float z = vectorFormFactor.z / len;
const float LUT_SIZE = 64.0;
const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;
const float LUT_BIAS = 0.5 / LUT_SIZE;
// tabulated horizon-clipped sphere, apparently...
vec2 uv = vec2( z * 0.5 + 0.5, len );
uv = uv * LUT_SCALE + LUT_BIAS;
float scale = texture2D( ltc_2, uv ).w;
float result = len * scale;
*/
return vec3( result );
}
// End Rect Area Light
// ref: https://www.unrealengine.com/blog/physically-based-shading-on-mobile - environmentBRDF for GGX on mobile
vec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {
float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );
const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );
const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );
vec4 r = roughness * c0 + c1;
float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;
vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
return specularColor * AB.x + AB.y;
} // validated
float G_BlinnPhong_Implicit( /* const in float dotNL, const in float dotNV */ ) {
// geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v)
return 0.25;
}
float D_BlinnPhong( const in float shininess, const in float dotNH ) {
return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );
}
vec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {
vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );
//float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );
//float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );
float dotNH = saturate( dot( geometry.normal, halfDir ) );
float dotLH = saturate( dot( incidentLight.direction, halfDir ) );
vec3 F = F_Schlick( specularColor, dotLH );
float G = G_BlinnPhong_Implicit( /* dotNL, dotNV */ );
float D = D_BlinnPhong( shininess, dotNH );
return F * ( G * D );
} // validated
// source: http://simonstechblog.blogspot.ca/2011/12/microfacet-brdf.html
float GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {
return ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );
}
float BlinnExponentToGGXRoughness( const in float blinnExponent ) {
return sqrt( 2.0 / ( blinnExponent + 2.0 ) );
}