fireball/lib/extras/core/Curve.js
2018-12-25 17:29:22 +03:30

426 lines
8.1 KiB
JavaScript

import { _Math } from '../../math/Math.js';
import { Vector3 } from '../../math/Vector3.js';
import { Matrix4 } from '../../math/Matrix4.js';
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Extensible curve object
*
* Some common of curve methods:
* .getPoint( t, optionalTarget ), .getTangent( t )
* .getPointAt( u, optionalTarget ), .getTangentAt( u )
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This following curves inherit from THREE.Curve:
*
* -- 2D curves --
* THREE.ArcCurve
* THREE.CubicBezierCurve
* THREE.EllipseCurve
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.SplineCurve
*
* -- 3D curves --
* THREE.CatmullRomCurve3
* THREE.CubicBezierCurve3
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
*
* A series of curves can be represented as a THREE.CurvePath.
*
**/
/**************************************************************
* Abstract Curve base class
**************************************************************/
function Curve() {
this.type = 'Curve';
this.arcLengthDivisions = 200;
}
Object.assign( Curve.prototype, {
// Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
getPoint: function ( /* t, optionalTarget */ ) {
console.warn( 'THREE.Curve: .getPoint() not implemented.' );
return null;
},
// Get point at relative position in curve according to arc length
// - u [0 .. 1]
getPointAt: function ( u, optionalTarget ) {
var t = this.getUtoTmapping( u );
return this.getPoint( t, optionalTarget );
},
// Get sequence of points using getPoint( t )
getPoints: function ( divisions ) {
if ( divisions === undefined ) divisions = 5;
var points = [];
for ( var d = 0; d <= divisions; d ++ ) {
points.push( this.getPoint( d / divisions ) );
}
return points;
},
// Get sequence of points using getPointAt( u )
getSpacedPoints: function ( divisions ) {
if ( divisions === undefined ) divisions = 5;
var points = [];
for ( var d = 0; d <= divisions; d ++ ) {
points.push( this.getPointAt( d / divisions ) );
}
return points;
},
// Get total curve arc length
getLength: function () {
var lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
},
// Get list of cumulative segment lengths
getLengths: function ( divisions ) {
if ( divisions === undefined ) divisions = this.arcLengthDivisions;
if ( this.cacheArcLengths &&
( this.cacheArcLengths.length === divisions + 1 ) &&
! this.needsUpdate ) {
return this.cacheArcLengths;
}
this.needsUpdate = false;
var cache = [];
var current, last = this.getPoint( 0 );
var p, sum = 0;
cache.push( 0 );
for ( p = 1; p <= divisions; p ++ ) {
current = this.getPoint( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
},
updateArcLengths: function () {
this.needsUpdate = true;
this.getLengths();
},
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
getUtoTmapping: function ( u, distance ) {
var arcLengths = this.getLengths();
var i = 0, il = arcLengths.length;
var targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
// binary search for the index with largest value smaller than target u distance
var low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
} else if ( comparison > 0 ) {
high = i - 1;
} else {
high = i;
break;
// DONE
}
}
i = high;
if ( arcLengths[ i ] === targetArcLength ) {
return i / ( il - 1 );
}
// we could get finer grain at lengths, or use simple interpolation between two points
var lengthBefore = arcLengths[ i ];
var lengthAfter = arcLengths[ i + 1 ];
var segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
var t = ( i + segmentFraction ) / ( il - 1 );
return t;
},
// Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent derivation,
// 2 points a small delta apart will be used to find its gradient
// which seems to give a reasonable approximation
getTangent: function ( t ) {
var delta = 0.0001;
var t1 = t - delta;
var t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
var pt1 = this.getPoint( t1 );
var pt2 = this.getPoint( t2 );
var vec = pt2.clone().sub( pt1 );
return vec.normalize();
},
getTangentAt: function ( u ) {
var t = this.getUtoTmapping( u );
return this.getTangent( t );
},
computeFrenetFrames: function ( segments, closed ) {
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
var normal = new Vector3();
var tangents = [];
var normals = [];
var binormals = [];
var vec = new Vector3();
var mat = new Matrix4();
var i, u, theta;
// compute the tangent vectors for each segment on the curve
for ( i = 0; i <= segments; i ++ ) {
u = i / segments;
tangents[ i ] = this.getTangentAt( u );
tangents[ i ].normalize();
}
// select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the minimum tangent xyz component
normals[ 0 ] = new Vector3();
binormals[ 0 ] = new Vector3();
var min = Number.MAX_VALUE;
var tx = Math.abs( tangents[ 0 ].x );
var ty = Math.abs( tangents[ 0 ].y );
var tz = Math.abs( tangents[ 0 ].z );
if ( tx <= min ) {
min = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= min ) {
min = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= min ) {
normal.set( 0, 0, 1 );
}
vec.crossVectors( tangents[ 0 ], normal ).normalize();
normals[ 0 ].crossVectors( tangents[ 0 ], vec );
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
// compute the slowly-varying normal and binormal vectors for each segment on the curve
for ( i = 1; i <= segments; i ++ ) {
normals[ i ] = normals[ i - 1 ].clone();
binormals[ i ] = binormals[ i - 1 ].clone();
vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
if ( vec.length() > Number.EPSILON ) {
vec.normalize();
theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
}
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed === true ) {
theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
theta /= segments;
if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {
theta = - theta;
}
for ( i = 1; i <= segments; i ++ ) {
// twist a little...
normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
}
return {
tangents: tangents,
normals: normals,
binormals: binormals
};
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.arcLengthDivisions = source.arcLengthDivisions;
return this;
},
toJSON: function () {
var data = {
metadata: {
version: 4.5,
type: 'Curve',
generator: 'Curve.toJSON'
}
};
data.arcLengthDivisions = this.arcLengthDivisions;
data.type = this.type;
return data;
},
fromJSON: function ( json ) {
this.arcLengthDivisions = json.arcLengthDivisions;
return this;
}
} );
export { Curve };