547 lines
11 KiB
JavaScript
547 lines
11 KiB
JavaScript
import { Vector3 } from './Vector3.js';
|
|
|
|
/**
|
|
* @author bhouston / http://clara.io
|
|
*/
|
|
|
|
function Ray( origin, direction ) {
|
|
|
|
this.origin = ( origin !== undefined ) ? origin : new Vector3();
|
|
this.direction = ( direction !== undefined ) ? direction : new Vector3();
|
|
|
|
}
|
|
|
|
Object.assign( Ray.prototype, {
|
|
|
|
set: function ( origin, direction ) {
|
|
|
|
this.origin.copy( origin );
|
|
this.direction.copy( direction );
|
|
|
|
return this;
|
|
|
|
},
|
|
|
|
clone: function () {
|
|
|
|
return new this.constructor().copy( this );
|
|
|
|
},
|
|
|
|
copy: function ( ray ) {
|
|
|
|
this.origin.copy( ray.origin );
|
|
this.direction.copy( ray.direction );
|
|
|
|
return this;
|
|
|
|
},
|
|
|
|
at: function ( t, target ) {
|
|
|
|
if ( target === undefined ) {
|
|
|
|
console.warn( 'THREE.Ray: .at() target is now required' );
|
|
target = new Vector3();
|
|
|
|
}
|
|
|
|
return target.copy( this.direction ).multiplyScalar( t ).add( this.origin );
|
|
|
|
},
|
|
|
|
lookAt: function ( v ) {
|
|
|
|
this.direction.copy( v ).sub( this.origin ).normalize();
|
|
|
|
return this;
|
|
|
|
},
|
|
|
|
recast: function () {
|
|
|
|
var v1 = new Vector3();
|
|
|
|
return function recast( t ) {
|
|
|
|
this.origin.copy( this.at( t, v1 ) );
|
|
|
|
return this;
|
|
|
|
};
|
|
|
|
}(),
|
|
|
|
closestPointToPoint: function ( point, target ) {
|
|
|
|
if ( target === undefined ) {
|
|
|
|
console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' );
|
|
target = new Vector3();
|
|
|
|
}
|
|
|
|
target.subVectors( point, this.origin );
|
|
|
|
var directionDistance = target.dot( this.direction );
|
|
|
|
if ( directionDistance < 0 ) {
|
|
|
|
return target.copy( this.origin );
|
|
|
|
}
|
|
|
|
return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
|
|
|
|
},
|
|
|
|
distanceToPoint: function ( point ) {
|
|
|
|
return Math.sqrt( this.distanceSqToPoint( point ) );
|
|
|
|
},
|
|
|
|
distanceSqToPoint: function () {
|
|
|
|
var v1 = new Vector3();
|
|
|
|
return function distanceSqToPoint( point ) {
|
|
|
|
var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction );
|
|
|
|
// point behind the ray
|
|
|
|
if ( directionDistance < 0 ) {
|
|
|
|
return this.origin.distanceToSquared( point );
|
|
|
|
}
|
|
|
|
v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
|
|
|
|
return v1.distanceToSquared( point );
|
|
|
|
};
|
|
|
|
}(),
|
|
|
|
distanceSqToSegment: function () {
|
|
|
|
var segCenter = new Vector3();
|
|
var segDir = new Vector3();
|
|
var diff = new Vector3();
|
|
|
|
return function distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
|
|
|
|
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
|
|
// It returns the min distance between the ray and the segment
|
|
// defined by v0 and v1
|
|
// It can also set two optional targets :
|
|
// - The closest point on the ray
|
|
// - The closest point on the segment
|
|
|
|
segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
|
|
segDir.copy( v1 ).sub( v0 ).normalize();
|
|
diff.copy( this.origin ).sub( segCenter );
|
|
|
|
var segExtent = v0.distanceTo( v1 ) * 0.5;
|
|
var a01 = - this.direction.dot( segDir );
|
|
var b0 = diff.dot( this.direction );
|
|
var b1 = - diff.dot( segDir );
|
|
var c = diff.lengthSq();
|
|
var det = Math.abs( 1 - a01 * a01 );
|
|
var s0, s1, sqrDist, extDet;
|
|
|
|
if ( det > 0 ) {
|
|
|
|
// The ray and segment are not parallel.
|
|
|
|
s0 = a01 * b1 - b0;
|
|
s1 = a01 * b0 - b1;
|
|
extDet = segExtent * det;
|
|
|
|
if ( s0 >= 0 ) {
|
|
|
|
if ( s1 >= - extDet ) {
|
|
|
|
if ( s1 <= extDet ) {
|
|
|
|
// region 0
|
|
// Minimum at interior points of ray and segment.
|
|
|
|
var invDet = 1 / det;
|
|
s0 *= invDet;
|
|
s1 *= invDet;
|
|
sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
|
|
|
|
} else {
|
|
|
|
// region 1
|
|
|
|
s1 = segExtent;
|
|
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
|
|
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// region 5
|
|
|
|
s1 = - segExtent;
|
|
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
|
|
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if ( s1 <= - extDet ) {
|
|
|
|
// region 4
|
|
|
|
s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
|
|
s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
|
|
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
|
|
|
|
} else if ( s1 <= extDet ) {
|
|
|
|
// region 3
|
|
|
|
s0 = 0;
|
|
s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
|
|
sqrDist = s1 * ( s1 + 2 * b1 ) + c;
|
|
|
|
} else {
|
|
|
|
// region 2
|
|
|
|
s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
|
|
s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
|
|
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Ray and segment are parallel.
|
|
|
|
s1 = ( a01 > 0 ) ? - segExtent : segExtent;
|
|
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
|
|
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
|
|
|
|
}
|
|
|
|
if ( optionalPointOnRay ) {
|
|
|
|
optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );
|
|
|
|
}
|
|
|
|
if ( optionalPointOnSegment ) {
|
|
|
|
optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter );
|
|
|
|
}
|
|
|
|
return sqrDist;
|
|
|
|
};
|
|
|
|
}(),
|
|
|
|
intersectSphere: function () {
|
|
|
|
var v1 = new Vector3();
|
|
|
|
return function intersectSphere( sphere, target ) {
|
|
|
|
v1.subVectors( sphere.center, this.origin );
|
|
var tca = v1.dot( this.direction );
|
|
var d2 = v1.dot( v1 ) - tca * tca;
|
|
var radius2 = sphere.radius * sphere.radius;
|
|
|
|
if ( d2 > radius2 ) return null;
|
|
|
|
var thc = Math.sqrt( radius2 - d2 );
|
|
|
|
// t0 = first intersect point - entrance on front of sphere
|
|
var t0 = tca - thc;
|
|
|
|
// t1 = second intersect point - exit point on back of sphere
|
|
var t1 = tca + thc;
|
|
|
|
// test to see if both t0 and t1 are behind the ray - if so, return null
|
|
if ( t0 < 0 && t1 < 0 ) return null;
|
|
|
|
// test to see if t0 is behind the ray:
|
|
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
|
|
// in order to always return an intersect point that is in front of the ray.
|
|
if ( t0 < 0 ) return this.at( t1, target );
|
|
|
|
// else t0 is in front of the ray, so return the first collision point scaled by t0
|
|
return this.at( t0, target );
|
|
|
|
};
|
|
|
|
}(),
|
|
|
|
intersectsSphere: function ( sphere ) {
|
|
|
|
return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius );
|
|
|
|
},
|
|
|
|
distanceToPlane: function ( plane ) {
|
|
|
|
var denominator = plane.normal.dot( this.direction );
|
|
|
|
if ( denominator === 0 ) {
|
|
|
|
// line is coplanar, return origin
|
|
if ( plane.distanceToPoint( this.origin ) === 0 ) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
// Null is preferable to undefined since undefined means.... it is undefined
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
|
|
|
|
// Return if the ray never intersects the plane
|
|
|
|
return t >= 0 ? t : null;
|
|
|
|
},
|
|
|
|
intersectPlane: function ( plane, target ) {
|
|
|
|
var t = this.distanceToPlane( plane );
|
|
|
|
if ( t === null ) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
return this.at( t, target );
|
|
|
|
},
|
|
|
|
intersectsPlane: function ( plane ) {
|
|
|
|
// check if the ray lies on the plane first
|
|
|
|
var distToPoint = plane.distanceToPoint( this.origin );
|
|
|
|
if ( distToPoint === 0 ) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
var denominator = plane.normal.dot( this.direction );
|
|
|
|
if ( denominator * distToPoint < 0 ) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
// ray origin is behind the plane (and is pointing behind it)
|
|
|
|
return false;
|
|
|
|
},
|
|
|
|
intersectBox: function ( box, target ) {
|
|
|
|
var tmin, tmax, tymin, tymax, tzmin, tzmax;
|
|
|
|
var invdirx = 1 / this.direction.x,
|
|
invdiry = 1 / this.direction.y,
|
|
invdirz = 1 / this.direction.z;
|
|
|
|
var origin = this.origin;
|
|
|
|
if ( invdirx >= 0 ) {
|
|
|
|
tmin = ( box.min.x - origin.x ) * invdirx;
|
|
tmax = ( box.max.x - origin.x ) * invdirx;
|
|
|
|
} else {
|
|
|
|
tmin = ( box.max.x - origin.x ) * invdirx;
|
|
tmax = ( box.min.x - origin.x ) * invdirx;
|
|
|
|
}
|
|
|
|
if ( invdiry >= 0 ) {
|
|
|
|
tymin = ( box.min.y - origin.y ) * invdiry;
|
|
tymax = ( box.max.y - origin.y ) * invdiry;
|
|
|
|
} else {
|
|
|
|
tymin = ( box.max.y - origin.y ) * invdiry;
|
|
tymax = ( box.min.y - origin.y ) * invdiry;
|
|
|
|
}
|
|
|
|
if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
|
|
|
|
// These lines also handle the case where tmin or tmax is NaN
|
|
// (result of 0 * Infinity). x !== x returns true if x is NaN
|
|
|
|
if ( tymin > tmin || tmin !== tmin ) tmin = tymin;
|
|
|
|
if ( tymax < tmax || tmax !== tmax ) tmax = tymax;
|
|
|
|
if ( invdirz >= 0 ) {
|
|
|
|
tzmin = ( box.min.z - origin.z ) * invdirz;
|
|
tzmax = ( box.max.z - origin.z ) * invdirz;
|
|
|
|
} else {
|
|
|
|
tzmin = ( box.max.z - origin.z ) * invdirz;
|
|
tzmax = ( box.min.z - origin.z ) * invdirz;
|
|
|
|
}
|
|
|
|
if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
|
|
|
|
if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
|
|
|
|
if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
|
|
|
|
//return point closest to the ray (positive side)
|
|
|
|
if ( tmax < 0 ) return null;
|
|
|
|
return this.at( tmin >= 0 ? tmin : tmax, target );
|
|
|
|
},
|
|
|
|
intersectsBox: ( function () {
|
|
|
|
var v = new Vector3();
|
|
|
|
return function intersectsBox( box ) {
|
|
|
|
return this.intersectBox( box, v ) !== null;
|
|
|
|
};
|
|
|
|
} )(),
|
|
|
|
intersectTriangle: function () {
|
|
|
|
// Compute the offset origin, edges, and normal.
|
|
var diff = new Vector3();
|
|
var edge1 = new Vector3();
|
|
var edge2 = new Vector3();
|
|
var normal = new Vector3();
|
|
|
|
return function intersectTriangle( a, b, c, backfaceCulling, target ) {
|
|
|
|
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
|
|
|
|
edge1.subVectors( b, a );
|
|
edge2.subVectors( c, a );
|
|
normal.crossVectors( edge1, edge2 );
|
|
|
|
// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
|
|
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
|
|
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
|
|
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
|
|
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
|
|
var DdN = this.direction.dot( normal );
|
|
var sign;
|
|
|
|
if ( DdN > 0 ) {
|
|
|
|
if ( backfaceCulling ) return null;
|
|
sign = 1;
|
|
|
|
} else if ( DdN < 0 ) {
|
|
|
|
sign = - 1;
|
|
DdN = - DdN;
|
|
|
|
} else {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
diff.subVectors( this.origin, a );
|
|
var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) );
|
|
|
|
// b1 < 0, no intersection
|
|
if ( DdQxE2 < 0 ) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) );
|
|
|
|
// b2 < 0, no intersection
|
|
if ( DdE1xQ < 0 ) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
// b1+b2 > 1, no intersection
|
|
if ( DdQxE2 + DdE1xQ > DdN ) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
// Line intersects triangle, check if ray does.
|
|
var QdN = - sign * diff.dot( normal );
|
|
|
|
// t < 0, no intersection
|
|
if ( QdN < 0 ) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
// Ray intersects triangle.
|
|
return this.at( QdN / DdN, target );
|
|
|
|
};
|
|
|
|
}(),
|
|
|
|
applyMatrix4: function ( matrix4 ) {
|
|
|
|
this.origin.applyMatrix4( matrix4 );
|
|
this.direction.transformDirection( matrix4 );
|
|
|
|
return this;
|
|
|
|
},
|
|
|
|
equals: function ( ray ) {
|
|
|
|
return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
|
|
|
|
}
|
|
|
|
} );
|
|
|
|
|
|
export { Ray };
|