import { _Math } from '../../math/Math.js'; import { Vector3 } from '../../math/Vector3.js'; import { Matrix4 } from '../../math/Matrix4.js'; /** * @author zz85 / http://www.lab4games.net/zz85/blog * Extensible curve object * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t ) * .getPointAt( u, optionalTarget ), .getTangentAt( u ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ /************************************************************** * Abstract Curve base class **************************************************************/ function Curve() { this.type = 'Curve'; this.arcLengthDivisions = 200; } Object.assign( Curve.prototype, { // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint: function ( /* t, optionalTarget */ ) { console.warn( 'THREE.Curve: .getPoint() not implemented.' ); return null; }, // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt: function ( u, optionalTarget ) { var t = this.getUtoTmapping( u ); return this.getPoint( t, optionalTarget ); }, // Get sequence of points using getPoint( t ) getPoints: function ( divisions ) { if ( divisions === undefined ) divisions = 5; var points = []; for ( var d = 0; d <= divisions; d ++ ) { points.push( this.getPoint( d / divisions ) ); } return points; }, // Get sequence of points using getPointAt( u ) getSpacedPoints: function ( divisions ) { if ( divisions === undefined ) divisions = 5; var points = []; for ( var d = 0; d <= divisions; d ++ ) { points.push( this.getPointAt( d / divisions ) ); } return points; }, // Get total curve arc length getLength: function () { var lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; }, // Get list of cumulative segment lengths getLengths: function ( divisions ) { if ( divisions === undefined ) divisions = this.arcLengthDivisions; if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { return this.cacheArcLengths; } this.needsUpdate = false; var cache = []; var current, last = this.getPoint( 0 ); var p, sum = 0; cache.push( 0 ); for ( p = 1; p <= divisions; p ++ ) { current = this.getPoint( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum: sum }; Sum is in the last element. }, updateArcLengths: function () { this.needsUpdate = true; this.getLengths(); }, // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping: function ( u, distance ) { var arcLengths = this.getLengths(); var i = 0, il = arcLengths.length; var targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } // binary search for the index with largest value smaller than target u distance var low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; if ( arcLengths[ i ] === targetArcLength ) { return i / ( il - 1 ); } // we could get finer grain at lengths, or use simple interpolation between two points var lengthBefore = arcLengths[ i ]; var lengthAfter = arcLengths[ i + 1 ]; var segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t var t = ( i + segmentFraction ) / ( il - 1 ); return t; }, // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent: function ( t ) { var delta = 0.0001; var t1 = t - delta; var t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; var pt1 = this.getPoint( t1 ); var pt2 = this.getPoint( t2 ); var vec = pt2.clone().sub( pt1 ); return vec.normalize(); }, getTangentAt: function ( u ) { var t = this.getUtoTmapping( u ); return this.getTangent( t ); }, computeFrenetFrames: function ( segments, closed ) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf var normal = new Vector3(); var tangents = []; var normals = []; var binormals = []; var vec = new Vector3(); var mat = new Matrix4(); var i, u, theta; // compute the tangent vectors for each segment on the curve for ( i = 0; i <= segments; i ++ ) { u = i / segments; tangents[ i ] = this.getTangentAt( u ); tangents[ i ].normalize(); } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[ 0 ] = new Vector3(); binormals[ 0 ] = new Vector3(); var min = Number.MAX_VALUE; var tx = Math.abs( tangents[ 0 ].x ); var ty = Math.abs( tangents[ 0 ].y ); var tz = Math.abs( tangents[ 0 ].z ); if ( tx <= min ) { min = tx; normal.set( 1, 0, 0 ); } if ( ty <= min ) { min = ty; normal.set( 0, 1, 0 ); } if ( tz <= min ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); // compute the slowly-varying normal and binormal vectors for each segment on the curve for ( i = 1; i <= segments; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed === true ) { theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); theta /= segments; if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { theta = - theta; } for ( i = 1; i <= segments; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } return { tangents: tangents, normals: normals, binormals: binormals }; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.arcLengthDivisions = source.arcLengthDivisions; return this; }, toJSON: function () { var data = { metadata: { version: 4.5, type: 'Curve', generator: 'Curve.toJSON' } }; data.arcLengthDivisions = this.arcLengthDivisions; data.type = this.type; return data; }, fromJSON: function ( json ) { this.arcLengthDivisions = json.arcLengthDivisions; return this; } } ); export { Curve };