fireball/lib/math/Box3.js

617 lines
13 KiB
JavaScript
Raw Normal View History

2018-12-25 13:59:22 +00:00
import { Vector3 } from './Vector3.js';
import { Sphere } from './Sphere.js';
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
function Box3( min, max ) {
this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );
}
Object.assign( Box3.prototype, {
isBox3: true,
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromArray: function ( array ) {
var minX = + Infinity;
var minY = + Infinity;
var minZ = + Infinity;
var maxX = - Infinity;
var maxY = - Infinity;
var maxZ = - Infinity;
for ( var i = 0, l = array.length; i < l; i += 3 ) {
var x = array[ i ];
var y = array[ i + 1 ];
var z = array[ i + 2 ];
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
},
setFromBufferAttribute: function ( attribute ) {
var minX = + Infinity;
var minY = + Infinity;
var minZ = + Infinity;
var maxX = - Infinity;
var maxY = - Infinity;
var maxZ = - Infinity;
for ( var i = 0, l = attribute.count; i < l; i ++ ) {
var x = attribute.getX( i );
var y = attribute.getY( i );
var z = attribute.getZ( i );
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( var i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function () {
var v1 = new Vector3();
return function setFromCenterAndSize( center, size ) {
var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
};
}(),
setFromObject: function ( object ) {
this.makeEmpty();
return this.expandByObject( object );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = this.min.z = + Infinity;
this.max.x = this.max.y = this.max.z = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
},
getCenter: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getCenter() target is now required' );
target = new Vector3();
}
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
getSize: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getSize() target is now required' );
target = new Vector3();
}
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
expandByObject: function () {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object's, and children's, world transforms
var scope, i, l;
var v1 = new Vector3();
function traverse( node ) {
var geometry = node.geometry;
if ( geometry !== undefined ) {
if ( geometry.isGeometry ) {
var vertices = geometry.vertices;
for ( i = 0, l = vertices.length; i < l; i ++ ) {
v1.copy( vertices[ i ] );
v1.applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
} else if ( geometry.isBufferGeometry ) {
var attribute = geometry.attributes.position;
if ( attribute !== undefined ) {
for ( i = 0, l = attribute.count; i < l; i ++ ) {
v1.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
}
}
}
}
return function expandByObject( object ) {
scope = this;
object.updateMatrixWorld( true );
object.traverse( traverse );
return this;
};
}(),
containsPoint: function ( point ) {
return point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ||
point.z < this.min.z || point.z > this.max.z ? false : true;
},
containsBox: function ( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y &&
this.min.z <= box.min.z && box.max.z <= this.max.z;
},
getParameter: function ( point, target ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getParameter() target is now required' );
target = new Vector3();
}
return target.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y ),
( point.z - this.min.z ) / ( this.max.z - this.min.z )
);
},
intersectsBox: function ( box ) {
// using 6 splitting planes to rule out intersections.
return box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ||
box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
},
intersectsSphere: ( function () {
var closestPoint = new Vector3();
return function intersectsSphere( sphere ) {
// Find the point on the AABB closest to the sphere center.
this.clampPoint( sphere.center, closestPoint );
// If that point is inside the sphere, the AABB and sphere intersect.
return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
};
} )(),
intersectsPlane: function ( plane ) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
var min, max;
if ( plane.normal.x > 0 ) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if ( plane.normal.y > 0 ) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if ( plane.normal.z > 0 ) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return ( min <= - plane.constant && max >= - plane.constant );
},
intersectsTriangle: ( function () {
// triangle centered vertices
var v0 = new Vector3();
var v1 = new Vector3();
var v2 = new Vector3();
// triangle edge vectors
var f0 = new Vector3();
var f1 = new Vector3();
var f2 = new Vector3();
var testAxis = new Vector3();
var center = new Vector3();
var extents = new Vector3();
var triangleNormal = new Vector3();
function satForAxes( axes ) {
var i, j;
for ( i = 0, j = axes.length - 3; i <= j; i += 3 ) {
testAxis.fromArray( axes, i );
// project the aabb onto the seperating axis
var r = extents.x * Math.abs( testAxis.x ) + extents.y * Math.abs( testAxis.y ) + extents.z * Math.abs( testAxis.z );
// project all 3 vertices of the triangle onto the seperating axis
var p0 = v0.dot( testAxis );
var p1 = v1.dot( testAxis );
var p2 = v2.dot( testAxis );
// actual test, basically see if either of the most extreme of the triangle points intersects r
if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {
// points of the projected triangle are outside the projected half-length of the aabb
// the axis is seperating and we can exit
return false;
}
}
return true;
}
return function intersectsTriangle( triangle ) {
if ( this.isEmpty() ) {
return false;
}
// compute box center and extents
this.getCenter( center );
extents.subVectors( this.max, center );
// translate triangle to aabb origin
v0.subVectors( triangle.a, center );
v1.subVectors( triangle.b, center );
v2.subVectors( triangle.c, center );
// compute edge vectors for triangle
f0.subVectors( v1, v0 );
f1.subVectors( v2, v1 );
f2.subVectors( v0, v2 );
// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
var axes = [
0, - f0.z, f0.y, 0, - f1.z, f1.y, 0, - f2.z, f2.y,
f0.z, 0, - f0.x, f1.z, 0, - f1.x, f2.z, 0, - f2.x,
- f0.y, f0.x, 0, - f1.y, f1.x, 0, - f2.y, f2.x, 0
];
if ( ! satForAxes( axes ) ) {
return false;
}
// test 3 face normals from the aabb
axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
if ( ! satForAxes( axes ) ) {
return false;
}
// finally testing the face normal of the triangle
// use already existing triangle edge vectors here
triangleNormal.crossVectors( f0, f1 );
axes = [ triangleNormal.x, triangleNormal.y, triangleNormal.z ];
return satForAxes( axes );
};
} )(),
clampPoint: function ( point, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .clampPoint() target is now required' );
target = new Vector3();
}
return target.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function () {
var v1 = new Vector3();
return function distanceToPoint( point ) {
var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
};
}(),
getBoundingSphere: function () {
var v1 = new Vector3();
return function getBoundingSphere( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getBoundingSphere() target is now required' );
target = new Sphere();
}
this.getCenter( target.center );
target.radius = this.getSize( v1 ).length() * 0.5;
return target;
};
}(),
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if ( this.isEmpty() ) this.makeEmpty();
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
applyMatrix4: function () {
var points = [
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3()
];
return function applyMatrix4( matrix ) {
// transform of empty box is an empty box.
if ( this.isEmpty() ) return this;
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
this.setFromPoints( points );
return this;
};
}(),
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
} );
export { Box3 };